Switch to: References

Add citations

You must login to add citations.
  1. Golden Ratio Geometry and the Fine-Structure Constant.Michael A. Sherbon - 2019 - Journal of Advances in Physics 16 (1):362 -368.
    The golden ratio is found to be related to the fine-structure constant, which determines the strength of the electromagnetic interaction. The golden ratio and classical harmonic proportions with quartic equations give an approximate value for the inverse fine-structure constant the same as that discovered previously in the geometry of the hydrogen atom. With the former golden ratio results, relationships are also shown between the four fundamental forces of nature: electromagnetism, the weak force, the strong force, and the force of gravitation.
    Download  
     
    Export citation  
     
    Bookmark  
  • Fine-Structure Constant from Golden Ratio Geometry.Michael A. Sherbon - 2018 - International Journal of Mathematics and Physical Sciences Research 5 (2):89-100.
    After a brief review of the golden ratio in history and our previous exposition of the fine-structure constant and equations with the exponential function, the fine-structure constant is studied in the context of other research calculating the fine-structure constant from the golden ratio geometry of the hydrogen atom. This research is extended and the fine-structure constant is then calculated in powers of the golden ratio to an accuracy consistent with the most recent publications. The mathematical constants associated with the golden (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Physical Mathematics and The Fine-Structure Constant.Michael A. Sherbon - 2018 - Journal of Advances in Physics 14 (3):5758-64.
    Research into ancient physical structures, some having been known as the seven wonders of the ancient world, inspired new developments in the early history of mathematics. At the other end of this spectrum of inquiry the research is concerned with the minimum of observations from physical data as exemplified by Eddington's Principle. Current discussions of the interplay between physics and mathematics revive some of this early history of mathematics and offer insight into the fine-structure constant. Arthur Eddington's work leads to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation