Switch to: References

Add citations

You must login to add citations.
  1. Pa Relative to an Enumeration Oracle.G. O. H. Jun Le, Iskander Sh Kalimullin, Joseph S. Miller & Mariya I. Soskova - 2023 - Journal of Symbolic Logic 88 (4):1497-1525.
    Recall that B is PA relative to A if B computes a member of every nonempty $\Pi ^0_1(A)$ class. This two-place relation is invariant under Turing equivalence and so can be thought of as a binary relation on Turing degrees. Miller and Soskova [23] introduced the notion of a $\Pi ^0_1$ class relative to an enumeration oracle A, which they called a $\Pi ^0_1{\left \langle {A}\right \rangle }$ class. We study the induced extension of the relation B is PA relative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)A structural dichotomy in the enumeration degrees.Hristo A. Ganchev, Iskander Sh Kalimullin, Joseph S. Miller & Mariya I. Soskova - 2022 - Journal of Symbolic Logic 87 (2):527-544.
    We give several new characterizations of the continuous enumeration degrees. The main one proves that an enumeration degree is continuous if and only if it is not half of a nontrivial relativized $\mathcal {K}$ -pair. This leads to a structural dichotomy in the enumeration degrees.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relationships between computability-theoretic properties of problems.Rod Downey, Noam Greenberg, Matthew Harrison-Trainor, Ludovic Patey & Dan Turetsky - 2022 - Journal of Symbolic Logic 87 (1):47-71.
    A problem is a multivalued function from a set of instances to a set of solutions. We consider only instances and solutions coded by sets of integers. A problem admits preservation of some computability-theoretic weakness property if every computable instance of the problem admits a solution relative to which the property holds. For example, cone avoidance is the ability, given a noncomputable set A and a computable instance of a problem ${\mathsf {P}}$, to find a solution relative to which A (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)A structural dichotomy in the enumeration degrees.Hristo A. Ganchev, Iskander Sh Kalimullin, Joseph S. Miller & Mariya I. Soskova - 2020 - Journal of Symbolic Logic:1-18.
    We give several new characterizations of the continuous enumeration degrees. The main one proves that an enumeration degree is continuous if and only if it is not half a nontrivial relativized K-pair. This leads to a structural dichotomy in the enumeration degrees.
    Download  
     
    Export citation  
     
    Bookmark   1 citation