Switch to: References

Add citations

You must login to add citations.
  1. A dedekind finite borel set.Arnold W. Miller - 2011 - Archive for Mathematical Logic 50 (1-2):1-17.
    In this paper we prove three theorems about the theory of Borel sets in models of ZF without any form of the axiom of choice. We prove that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B\subseteq 2^\omega}$$\end{document} is a Gδσ-set then either B is countable or B contains a perfect subset. Second, we prove that if 2ω is the countable union of countable sets, then there exists an Fσδ set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Does Imply, Uniformly?Alessandro Andretta & Lorenzo Notaro - forthcoming - Journal of Symbolic Logic:1-25.
    The axiom of dependent choice ( $\mathsf {DC}$ ) and the axiom of countable choice ( ${\mathsf {AC}}_\omega $ ) are two weak forms of the axiom of choice that can be stated for a specific set: $\mathsf {DC} ( X )$ asserts that any total binary relation on X has an infinite chain, while ${\mathsf {AC}}_\omega ( X )$ asserts that any countable collection of nonempty subsets of X has a choice function. It is well-known that $\mathsf {DC} \Rightarrow (...)
    Download  
     
    Export citation  
     
    Bookmark