Switch to: References

Add citations

You must login to add citations.
  1. Applying generic coding with help to uniformizations.Dan Hathaway - 2023 - Annals of Pure and Applied Logic 174 (4):103244.
    Download  
     
    Export citation  
     
    Bookmark  
  • Partition Forcing and Independent Families.Jorge A. Cruz-Chapital, Vera Fischer, Osvaldo Guzmán & Jaroslav Šupina - 2023 - Journal of Symbolic Logic 88 (4):1590-1612.
    We show that Miller partition forcing preserves selective independent families and P-points, which implies the consistency of $\mbox {cof}(\mathcal {N})=\mathfrak {a}=\mathfrak {u}=\mathfrak {i}<\mathfrak {a}_T=\omega _2$. In addition, we show that Shelah’s poset for destroying the maximality of a given maximal ideal preserves tight mad families and so we establish the consistency of $\mbox {cof}(\mathcal {N})=\mathfrak {a}=\mathfrak {i}=\omega _1<\mathfrak {u}=\mathfrak {a}_T=\omega _2$.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Sierpiński-Zygmund functions that are Darboux, almost continuous, or have a perfect road.Marek Balcerzak, Krzysztof Ciesielski & Tomasz Natkaniec - 1997 - Archive for Mathematical Logic 37 (1):29-35.
    In this paper we show that if the real line \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\Bbb R}$\end{document} is not a union of less than continuum many of its meager subsets then there exists an almost continuous Sierpiński–Zygmund function having a perfect road at each point. We also prove that it is consistent with ZFC that every Darboux function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $f\colon{\Bbb R}\to{\Bbb R}$\end{document} is continuous on some set (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On countably perfectly meager and countably perfectly null sets.Tomasz Weiss & Piotr Zakrzewski - 2024 - Annals of Pure and Applied Logic 175 (1):103357.
    Download  
     
    Export citation  
     
    Bookmark  
  • Forcing with copies of the Rado and Henson graphs.Osvaldo Guzmán & Stevo Todorcevic - 2023 - Annals of Pure and Applied Logic 174 (8):103286.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A model with no magic set.Krzysztof Ciesielski & Saharon Shelah - 1999 - Journal of Symbolic Logic 64 (4):1467-1490.
    We will prove that there exists a model of ZFC+"c = ω 2 " in which every $M \subseteq \mathbb{R}$ of cardinality less than continuum c is meager, and such that for every $X \subseteq \mathbb{R}$ of cardinality c there exists a continuous function f: R → R with f[X] = [0, 1]. In particular in this model there is no magic set, i.e., a set $M \subseteq \mathbb{R}$ such that the equation f[M] = g[M] implies f = g for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Strong Measure Zero Sets on for Inaccessible.Nick Steven Chapman & Johannes Philipp Schürz - forthcoming - Journal of Symbolic Logic:1-31.
    We investigate the notion of strong measure zero sets in the context of the higher Cantor space $2^\kappa $ for $\kappa $ at least inaccessible. Using an iteration of perfect tree forcings, we give two proofs of the relative consistency of $$\begin{align*}|2^\kappa| = \kappa^{++} + \forall X \subseteq 2^\kappa:\ X \textrm{ is strong measure zero if and only if } |X| \leq \kappa^+. \end{align*}$$ Furthermore, we also investigate the stronger notion of stationary strong measure zero and show that the equivalence (...)
    Download  
     
    Export citation  
     
    Bookmark