Switch to: References

Add citations

You must login to add citations.
  1. On universal modules with pure embeddings.Thomas G. Kucera & Marcos Mazari-Armida - 2020 - Mathematical Logic Quarterly 66 (4):395-408.
    We show that certain classes of modules have universal models with respect to pure embeddings: Let R be a ring, T a first‐order theory with an infinite model extending the theory of R‐modules and (where ⩽pp stands for “pure submodule”). Assume has the joint embedding and amalgamation properties. If or, then has a universal model of cardinality λ. As a special case, we get a recent result of Shelah [28, 1.2] concerning the existence of universal reduced torsion‐free abelian groups with (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Universal Structures.Saharon Shelah - 2017 - Notre Dame Journal of Formal Logic 58 (2):159-177.
    We deal with the existence of universal members in a given cardinality for several classes. First, we deal with classes of abelian groups, specifically with the existence of universal members in cardinalities which are strong limit singular of countable cofinality or λ=λℵ0. We use versions of being reduced—replacing Q by a subring —and get quite accurate results for the existence of universals in a cardinal, for embeddings and for pure embeddings. Second, we deal with the oak property, a property of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Dividing Line Methodology: Model Theory Motivating Set Theory.John T. Baldwin - 2021 - Theoria 87 (2):361-393.
    We explore Shelah's model‐theoretic dividing line methodology. In particular, we discuss how problems in model theory motivated new techniques in model theory, for example classifying theories by their potential (consistently with Zermelo–Fraenkel set theory with the axiom of choice (ZFC)) spectrum of cardinals in which there is a universal model. Two other examples are the study (with Malliaris) of the Keisler order leading to a new ZFC result on cardinal invariants and attempts to clarify the “main gap” by reducing the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Divide and Conquer: Dividing Lines and Universality.Saharon Shelah - 2021 - Theoria 87 (2):259-348.
    We discuss dividing lines (in model theory) and some test questions, mainly the universality spectrum. So there is much on conjectures, problems and old results, mainly of the author and also on some recent results.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On guessing generalized clubs at the successors of regulars.Assaf Rinot - 2011 - Annals of Pure and Applied Logic 162 (7):566-577.
    König, Larson and Yoshinobu initiated the study of principles for guessing generalized clubs, and introduced a construction of a higher Souslin tree from the strong guessing principle.Complementary to the author’s work on the validity of diamond and non-saturation at the successor of singulars, we deal here with a successor of regulars. It is established that even the non-strong guessing principle entails non-saturation, and that, assuming the necessary cardinal arithmetic configuration, entails a diamond-type principle which suffices for the construction of a (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The saturation of club guessing ideals.Tetsuya Ishiu - 2006 - Annals of Pure and Applied Logic 142 (1):398-424.
    We prove that it is consistent that there exists a saturated tail club guessing ideal on ω1 which is not a restriction of the non-stationary ideal. Two proofs are presented. The first one uses a new forcing axiom whose consistency can be proved from a supercompact cardinal. The resulting model can satisfy either CH or 20=2. The second one is a direct proof from a Woodin cardinal, which gives a witnessing model with CH.
    Download  
     
    Export citation  
     
    Bookmark