Switch to: References

Add citations

You must login to add citations.
  1. Algebraic structuralism.Neil Dewar - 2019 - Philosophical Studies 176 (7):1831-1854.
    This essay is about how the notion of “structure” in ontic structuralism might be made precise. More specifically, my aim is to make precise the idea that the structure of the world is given by the relations inhering in the world, in such a way that the relations are ontologically prior to their relata. The central claim is the following: one can do so by giving due attention to the relationships that hold between those relations, by making use of certain (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A style guide for the structuralist.Lucy Carr - forthcoming - Noûs.
    Ontic structuralists claim that there are no individual objects, and that reality should instead be thought of as a “web of relations”. It is difficult to make this metaphysical picture precise, however, since languages usually characterize the world by describing the objects that exist in it. This paper proposes a solution to the problem; I argue that when discourse is reformulated in the language of the calculus of relations ‐ an algebraic logic developed by Alfred Tarski ‐ it can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • First order logic without equality on relativized semantics.Amitayu Banerjee & Mohamed Khaled - 2018 - Annals of Pure and Applied Logic 169 (11):1227-1242.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Algebraic Logic, Where Does It Stand Today?Tarek Sayed Ahmed - 2005 - Bulletin of Symbolic Logic 11 (3):465-516.
    This is a survey article on algebraic logic. It gives a historical background leading up to a modern perspective. Central problems in algebraic logic (like the representation problem) are discussed in connection to other branches of logic, like modal logic, proof theory, model-theoretic forcing, finite combinatorics, and Gödel’s incompleteness results. We focus on cylindric algebras. Relation algebras and polyadic algebras are mostly covered only insofar as they relate to cylindric algebras, and even there we have not told the whole story. (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • An autobiography of polyadic algebras.Paul R. Halmos - 2000 - Logic Journal of the IGPL 8 (4):383-392.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Neat Embeddings, Omitting Types, and Interpolation: An Overview.Tarek Sayed Ahmed - 2003 - Notre Dame Journal of Formal Logic 44 (3):157-173.
    We survey various results on the relationship among neat embeddings (a notion special to cylindric algebras), complete representations, omitting types, and amalgamation. A hitherto unpublished application of algebraic logic to omitting types of first-order logic is given.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Conceptual Distance and Algebras of Concepts.Mohamed Khaled & Gergely Székely - forthcoming - Review of Symbolic Logic:1-16.
    We show that the conceptual distance between any two theories of first-order logic is the same as the generator distance between their Lindenbaum–Tarski algebras of concepts. As a consequence of this, we show that, for any two arbitrary mathematical structures, the generator distance between their meaning algebras (also known as cylindric set algebras) is the same as the conceptual distance between their first-order logic theories. As applications, we give a complete description for the distances between meaning algebras corresponding to structures (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Version of Predicate Logic with Two Variables That has an Incompleteness Property.Mohamed Khaled - forthcoming - Studia Logica:1-23.
    In this paper, we consider predicate logic with two individual variables and general assignment models (where the set of assignments of the variables into a model is allowed to be an arbitrary subset of the usual one). We prove that there is a statement such that no general assignment model in which it is true can be finitely axiomatized. We do this by showing that the free relativized cylindric algebras of dimension two are not atomic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Strongly representable atom structures of cylindric algebras.Robin Hirsch & Ian Hodkinson - 2009 - Journal of Symbolic Logic 74 (3):811-828.
    A cylindric algebra atom structure is said to be strongly representable if all atomic cylindric algebras with that atom structure are representable. This is equivalent to saying that the full complex algebra of the atom structure is a representable cylindric algebra. We show that for any finite n >3, the class of all strongly representable n-dimensional cylindric algebra atom structures is not closed under ultraproducts and is therefore not elementary. Our proof is based on the following construction. From an arbitrary (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Non-finitely axiomatisable modal product logics with infinite canonical axiomatisations.Christopher Hampson, Stanislav Kikot, Agi Kurucz & Sérgio Marcelino - 2020 - Annals of Pure and Applied Logic 171 (5):102786.
    Our concern is the axiomatisation problem for modal and algebraic logics that correspond to various fragments of two-variable first-order logic with counting quantifiers. In particular, we consider modal products with Diff, the propositional unimodal logic of the difference operator. We show that the two-dimensional product logic $Diff \times Diff$ is non-finitely axiomatisable, but can be axiomatised by infinitely many Sahlqvist axioms. We also show that its ‘square’ version (the modal counterpart of the substitution and equality free fragment of two-variable first-order (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Truth and Falsehood: An Inquiry Into Generalized Logical Values.Yaroslav Shramko & Heinrich Wansing - 2011 - Dordrecht, Netherland: Springer.
    The book presents a thoroughly elaborated logical theory of generalized truth-values understood as subsets of some established set of truth values. After elucidating the importance of the very notion of a truth value in logic and philosophy, we examine some possible ways of generalizing this notion. The useful four-valued logic of first-degree entailment by Nuel Belnap and the notion of a bilattice constitute the basis for further generalizations. By doing so we elaborate the idea of a multilattice, and most notably, (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations