Switch to: References

Add citations

You must login to add citations.
  1. Weak Well Orders and Fraïssé’s Conjecture.Anton Freund & Davide Manca - forthcoming - Journal of Symbolic Logic:1-16.
    The notion of countable well order admits an alternative definition in terms of embeddings between initial segments. We use the framework of reverse mathematics to investigate the logical strength of this definition and its connection with Fraïssé’s conjecture, which has been proved by Laver. We also fill a small gap in Shore’s proof that Fraïssé’s conjecture implies arithmetic transfinite recursion over $\mathbf {RCA}_0$, by giving a new proof of $\Sigma ^0_2$ -induction.
    Download  
     
    Export citation  
     
    Bookmark  
  • Embeddings between well-orderings: Computability-theoretic reductions.Jun Le Goh - 2020 - Annals of Pure and Applied Logic 171 (6):102789.
    We study the computational content of various theorems with reverse mathematical strength around Arithmetical Transfinite Recursion (ATR_0) from the point of view of computability-theoretic reducibilities, in particular Weihrauch reducibility. Our main result states that it is equally hard to construct an embedding between two given well-orderings, as it is to construct a Turing jump hierarchy on a given well-ordering. This answers a question of Marcone. We obtain a similar result for Fraïssé's conjecture restricted to well-orderings.
    Download  
     
    Export citation  
     
    Bookmark   3 citations