Switch to: References

Add citations

You must login to add citations.
  1. Epimorphism surjectivity in varieties of Heyting algebras.T. Moraschini & J. J. Wannenburg - 2020 - Annals of Pure and Applied Logic 171 (9):102824.
    It was shown recently that epimorphisms need not be surjective in a variety K of Heyting algebras, but only one counter-example was exhibited in the literature until now. Here, a continuum of such examples is identified, viz. the variety generated by the Rieger-Nishimura lattice, and all of its (locally finite) subvarieties that contain the original counter-example K . It is known that, whenever a variety of Heyting algebras has finite depth, then it has surjective epimorphisms. In contrast, we show that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Amalgamation through quantifier elimination for varieties of commutative residuated lattices.Enrico Marchioni - 2012 - Archive for Mathematical Logic 51 (1-2):15-34.
    This work presents a model-theoretic approach to the study of the amalgamation property for varieties of semilinear commutative residuated lattices. It is well-known that if a first-order theory T enjoys quantifier elimination in some language L, the class of models of the set of its universal consequences \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm T_\forall}$$\end{document} has the amalgamation property. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Th}(\mathbb{K})}$$\end{document} be the theory of an elementary subclass (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • n-Contractive BL-logics.Matteo Bianchi & Franco Montagna - 2011 - Archive for Mathematical Logic 50 (3-4):257-285.
    In the field of many-valued logics, Hájek’s Basic Logic BL was introduced in Hájek (Metamathematics of fuzzy logic, trends in logic. Kluwer Academic Publishers, Berlin, 1998). In this paper we will study four families of n-contractive (i.e. that satisfy the axiom \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi^n\rightarrow\phi^{n+1}}$$\end{document}, for some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n\in\mathbb{N}^+}$$\end{document}) axiomatic extensions of BL and their corresponding varieties: BLn, SBLn, BLn and SBLn. Concerning BLn we have that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On elementary equivalence in fuzzy predicate logics.Pilar Dellunde & Francesc Esteva - 2013 - Archive for Mathematical Logic 52 (1-2):1-17.
    Our work is a contribution to the model theory of fuzzy predicate logics. In this paper we characterize elementary equivalence between models of fuzzy predicate logic using elementary mappings. Refining the method of diagrams we give a solution to an open problem of Hájek and Cintula (J Symb Log 71(3):863–880, 2006, Conjectures 1 and 2). We investigate also the properties of elementary extensions in witnessed and quasi-witnessed theories, generalizing some results of Section 7 of Hájek and Cintula (J Symb Log (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • ŁΠ logic with fixed points.Luca Spada - 2008 - Archive for Mathematical Logic 47 (7-8):741-763.
    We study a system, μŁΠ, obtained by an expansion of ŁΠ logic with fixed points connectives. The first main result of the paper is that μŁΠ is standard complete, i.e., complete with regard to the unit interval of real numbers endowed with a suitable structure. We also prove that the class of algebras which forms algebraic semantics for this logic is generated, as a variety, by its linearly ordered members and that they are precisely the interval algebras of real closed (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Franco Montagna’s Work on Provability Logic and Many-valued Logic.Lev Beklemishev & Tommaso Flaminio - 2016 - Studia Logica 104 (1):1-46.
    Franco Montagna, a prominent logician and one of the leaders of the Italian school on Mathematical Logic, passed away on February 18, 2015. We survey some of his results and ideas in the two disciplines he greatly contributed along his career: provability logic and many-valued logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Leibniz interpolation properties.Leonardo Cabrer & José Gil-Férez - 2014 - Annals of Pure and Applied Logic 165 (4):933-962.
    We introduce a family of notions of interpolation for sentential logics. These concepts generalize the ones for substructural logics introduced in [5]. We show algebraic characterizations of these notions for the case of equivalential logics and study the relation between them and the usual concepts of Deductive, Robinson, and Maehara interpolation properties.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Δ-core Fuzzy Logics with Propositional Quantifiers, Quantifier Elimination and Uniform Craig Interpolation.Franco Montagna - 2012 - Studia Logica 100 (1-2):289-317.
    In this paper we investigate the connections between quantifier elimination, decidability and Uniform Craig Interpolation in Δ-core fuzzy logics added with propositional quantifiers. As a consequence, we are able to prove that several propositional fuzzy logics have a conservative extension which is a Δ-core fuzzy logic and has Uniform Craig Interpolation.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Universal proof theory: Semi-analytic rules and Craig interpolation.Amirhossein Akbar Tabatabai & Raheleh Jalali - 2025 - Annals of Pure and Applied Logic 176 (1):103509.
    Download  
     
    Export citation  
     
    Bookmark  
  • Consequence and Interpolation in Łukasiewicz Logic.Daniele Mundici - 2011 - Studia Logica 99 (1-3):269-278.
    Building on Wójcicki’s work on infinite-valued Łukasiewicz logic Ł ∞ , we give a self-contained proof of the deductive interpolation theorem for Ł ∞ . This paper aims at introducing the reader to the geometry of Łukasiewicz logic.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Completeness with respect to a chain and universal models in fuzzy logic.Franco Montagna - 2011 - Archive for Mathematical Logic 50 (1-2):161-183.
    In this paper we investigate fuzzy propositional and first order logics which are complete or strongly complete with respect to a single chain, and we relate this properties with the existence of a universal chain for the logic.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Craig interpolation for semilinear substructural logics.Enrico Marchioni & George Metcalfe - 2012 - Mathematical Logic Quarterly 58 (6):468-481.
    The Craig interpolation property is investigated for substructural logics whose algebraic semantics are varieties of semilinear pointed commutative residuated lattices. It is shown that Craig interpolation fails for certain classes of these logics with weakening if the corresponding algebras are not idempotent. A complete characterization is then given of axiomatic extensions of the “R-mingle with unit” logic that have the Craig interpolation property. This latter characterization is obtained using a model-theoretic quantifier elimination strategy to determine the varieties of Sugihara monoids (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Quantifier Elimination and Other Model-Theoretic Properties of BL-Algebras.Tommaso Cortonesi, Enrico Marchioni & Franco Montagna - 2011 - Notre Dame Journal of Formal Logic 52 (4):339-379.
    This work presents a model-theoretic approach to the study of first-order theories of classes of BL-chains. Among other facts, we present several classes of BL-algebras, generating the whole variety of BL-algebras, whose first-order theory has quantifier elimination. Model-completeness and decision problems are also investigated. Then we investigate classes of BL-algebras having (or not having) the amalgamation property or the joint embedding property and we relate the above properties to the existence of ultrahomogeneous models.
    Download  
     
    Export citation  
     
    Bookmark   1 citation