Switch to: References

Add citations

You must login to add citations.
  1. Mathematical fuzzy logics.Siegfried Gottwald - 2008 - Bulletin of Symbolic Logic 14 (2):210-239.
    The last decade has seen an enormous development in infinite-valued systems and in particular in such systems which have become known as mathematical fuzzy logics. The paper discusses the mathematical background for the interest in such systems of mathematical fuzzy logics, as well as the most important ones of them. It concentrates on the propositional cases, and mentions the first-order systems more superficially. The main ideas, however, become clear already in this restricted setting.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Algebraic Kripke-Style Semantics for Relevance Logics.Eunsuk Yang - 2014 - Journal of Philosophical Logic 43 (4):803-826.
    This paper deals with one kind of Kripke-style semantics, which we shall call algebraic Kripke-style semantics, for relevance logics. We first recall the logic R of relevant implication and some closely related systems, their corresponding algebraic structures, and algebraic completeness results. We provide simpler algebraic completeness proofs. We then introduce various types of algebraic Kripke-style semantics for these systems and connect them with algebraic semantics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Supersound many-valued logics and Dedekind-MacNeille completions.Matteo Bianchi & Franco Montagna - 2009 - Archive for Mathematical Logic 48 (8):719-736.
    In Hájek et al. (J Symb Logic 65(2):669–682, 2000) the authors introduce the concept of supersound logic, proving that first-order Gödel logic enjoys this property, whilst first-order Łukasiewicz and product logics do not; in Hájek and Shepherdson (Ann Pure Appl Logic 109(1–2):65–69, 2001) this result is improved showing that, among the logics given by continuous t-norms, Gödel logic is the only one that is supersound. In this paper we will generalize the previous results. Two conditions will be presented: the first (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Substructural Nuclear (Image-Based) Logics and Operational Kripke-Style Semantics.Eunsuk Yang - 2024 - Studia Logica 112 (4):805-833.
    This paper deals with substructural nuclear (image-based) logics and their algebraic and Kripke-style semantics. More precisely, we first introduce a class of substructural logics with connective _N_ satisfying nucleus property, called here substructural _nuclear_ logics, and its subclass, called here substructural _nuclear image-based_ logics, where _N_ further satisfies homomorphic image property. We then consider their algebraic semantics together with algebraic characterizations of those logics. Finally, we introduce _operational Kripke-style_ semantics for those logics and provide two sorts of completeness results for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Algebraic Proof of Completeness for Monadic Fuzzy Predicate Logic.Jun Tao Wang & Hongwei Wu - forthcoming - Review of Symbolic Logic:1-27.
    Monoidal t-norm based logic $\mathbf {MTL}$ is the weakest t-norm based residuated fuzzy logic, which is a $[0,1]$ -valued propositional logical system having a t-norm and its residuum as truth function for conjunction and implication. Monadic fuzzy predicate logic $\mathbf {mMTL\forall }$ that consists of the formulas with unary predicates and just one object variable, is the monadic fragment of fuzzy predicate logic $\mathbf {MTL\forall }$, which is indeed the predicate version of monoidal t-norm based logic $\mathbf {MTL}$. The main (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Crawley Completions of Residuated Lattices and Algebraic Completeness of Substructural Predicate Logics.Hiroakira Ono - 2012 - Studia Logica 100 (1-2):339-359.
    This paper discusses Crawley completions of residuated lattices. While MacNeille completions have been studied recently in relation to logic, Crawley completions (i.e. complete ideal completions), which are another kind of regular completions, have not been discussed much in this relation while many important algebraic works on Crawley completions had been done until the end of the 70’s. In this paper, basic algebraic properties of ideal completions and Crawley completions of residuated lattices are studied first in their conncetion with the join (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • These Degrees go to Eleven: Fuzzy Logics and Gradable Predicates.Petr Cintula, Berta Grimau, Carles Noguera & Nicholas J. J. Smith - 2022 - Synthese 200 (445):1-38.
    In the literature on vagueness one finds two very different kinds of degree theory. The dominant kind of account of gradable adjectives in formal semantics and linguistics is built on an underlying framework involving bivalence and classical logic: its degrees are not degrees of truth. On the other hand, fuzzy logic based theories of vagueness—largely absent from the formal semantics literature but playing a significant role in both the philosophical literature on vagueness and in the contemporary logic literature—are logically nonclassical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Kripke-style semantics for many-valued logics.Franco Montagna & Lorenzo Sacchetti - 2003 - Mathematical Logic Quarterly 49 (6):629.
    This paper deals with Kripke-style semantics for many-valued logics. We introduce various types of Kripke semantics, and we connect them with algebraic semantics. As for modal logics, we relate the axioms of logics extending MTL to properties of the Kripke frames in which they are valid. We show that in the propositional case most logics are complete but not strongly complete with respect to the corresponding class of complete Kripke frames, whereas in the predicate case there are important many-valued logics (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On the reflection invariance of residuated chains.Sándor Jenei - 2010 - Annals of Pure and Applied Logic 161 (2):220-227.
    It is shown that, under certain conditions, a subset of the graph of a commutative residuated chain is invariant under a geometric reflection. This result implies that a certain part of the graph of the monoidal operation of a commutative residuated chain determines another part of the graph via the reflection on one hand, and tells us about the structure of continuity points of the monoidal operation on the other. Finally, these results are applied for the subdomains of uniqueness problem, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Forcing operators on MTL-algebras.George Georgescu & Denisa Diaconescu - 2011 - Mathematical Logic Quarterly 57 (1):47-64.
    We study the forcing operators on MTL-algebras, an algebraic notion inspired by the Kripke semantics of the monoidal t -norm based logic . At logical level, they provide the notion of the forcing value of an MTL-formula. We characterize the forcing operators in terms of some MTL-algebras morphisms. From this result we derive the equality of the forcing value and the truth value of an MTL-formula.
    Download  
     
    Export citation  
     
    Bookmark  
  • Distinguished algebraic semantics for t -norm based fuzzy logics: Methods and algebraic equivalencies.Petr Cintula, Francesc Esteva, Joan Gispert, Lluís Godo, Franco Montagna & Carles Noguera - 2009 - Annals of Pure and Applied Logic 160 (1):53-81.
    This paper is a contribution to Mathematical fuzzy logic, in particular to the algebraic study of t-norm based fuzzy logics. In the general framework of propositional core and Δ-core fuzzy logics we consider three properties of completeness with respect to any semantics of linearly ordered algebras. Useful algebraic characterizations of these completeness properties are obtained and their relations are studied. Moreover, we concentrate on five kinds of distinguished semantics for these logics–namely the class of algebras defined over the real unit (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations