Switch to: References

Add citations

You must login to add citations.
  1. Implicit Definability in Arithmetic.Stephen G. Simpson - 2016 - Notre Dame Journal of Formal Logic 57 (3):329-339.
    We consider implicit definability over the natural number system $\mathbb{N},+,\times,=$. We present a new proof of two theorems of Leo Harrington. The first theorem says that there exist implicitly definable subsets of $\mathbb{N}$ which are not explicitly definable from each other. The second theorem says that there exists a subset of $\mathbb{N}$ which is not implicitly definable but belongs to a countable, explicitly definable set of subsets of $\mathbb{N}$. Previous proofs of these theorems have used finite- or infinite-injury priority constructions. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation