Switch to: References

Add citations

You must login to add citations.
  1. The Epsilon Calculus and Herbrand Complexity.Georg Moser & Richard Zach - 2006 - Studia Logica 82 (1):133-155.
    Hilbert's ε-calculus is based on an extension of the language of predicate logic by a term-forming operator εx. Two fundamental results about the ε-calculus, the first and second epsilon theorem, play a rôle similar to that which the cut-elimination theorem plays in sequent calculus. In particular, Herbrand's Theorem is a consequence of the epsilon theorems. The paper investigates the epsilon theorems and the complexity of the elimination procedure underlying their proof, as well as the length of Herbrand disjunctions of existential (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Herbrand complexity and the epsilon calculus with equality.Kenji Miyamoto & Georg Moser - 2023 - Archive for Mathematical Logic 63 (1):89-118.
    The $$\varepsilon $$ -elimination method of Hilbert’s $$\varepsilon $$ -calculus yields the up-to-date most direct algorithm for computing the Herbrand disjunction of an extensional formula. A central advantage is that the upper bound on the Herbrand complexity obtained is independent of the propositional structure of the proof. Prior (modern) work on Hilbert’s $$\varepsilon $$ -calculus focused mainly on the pure calculus, without equality. We clarify that this independence also holds for first-order logic with equality. Further, we provide upper bounds analyses (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Von neumann’s consistency proof.Luca Bellotti - 2016 - Review of Symbolic Logic 9 (3):429-455.
    Download  
     
    Export citation  
     
    Bookmark  
  • Epsilon theorems in intermediate logics.Matthias Baaz & Richard Zach - 2022 - Journal of Symbolic Logic 87 (2):682-720.
    Any intermediate propositional logic can be extended to a calculus with epsilon- and tau-operators and critical formulas. For classical logic, this results in Hilbert’s $\varepsilon $ -calculus. The first and second $\varepsilon $ -theorems for classical logic establish conservativity of the $\varepsilon $ -calculus over its classical base logic. It is well known that the second $\varepsilon $ -theorem fails for the intuitionistic $\varepsilon $ -calculus, as prenexation is impossible. The paper investigates the effect of adding critical $\varepsilon $ - (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Epsilon Calculus.Jeremy Avigad & Richard Zach - 2014 - In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphysics Research Lab.
    The epsilon calculus is a logical formalism developed by David Hilbert in the service of his program in the foundations of mathematics. The epsilon operator is a term-forming operator which replaces quantifiers in ordinary predicate logic. Specifically, in the calculus, a term εx A denotes some x satisfying A(x), if there is one. In Hilbert's Program, the epsilon terms play the role of ideal elements; the aim of Hilbert's finitistic consistency proofs is to give a procedure which removes such terms (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations