Switch to: References

Citations of:

On Computable Sequences

Journal of Symbolic Logic 25 (4):367-367 (1960)

Add citations

You must login to add citations.
  1. The binary expansion and the intermediate value theorem in constructive reverse mathematics.Josef Berger, Hajime Ishihara, Takayuki Kihara & Takako Nemoto - 2019 - Archive for Mathematical Logic 58 (1-2):203-217.
    We introduce the notion of a convex tree. We show that the binary expansion for real numbers in the unit interval ) is equivalent to weak König lemma ) for trees having at most two nodes at each level, and we prove that the intermediate value theorem is equivalent to \ for convex trees, in the framework of constructive reverse mathematics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Representations of the real numbers and of the open subsets of the set of real numbers.Klaus Weihrauch & Christoph Kreitz - 1987 - Annals of Pure and Applied Logic 35 (C):247-260.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Stability of representations of effective partial algebras.Jens Blanck, Viggo Stoltenberg-Hansen & John V. Tucker - 2011 - Mathematical Logic Quarterly 57 (2):217-231.
    An algebra is effective if its operations are computable under some numbering. When are two numberings of an effective partial algebra equivalent? For example, the computable real numbers form an effective field and two effective numberings of the field of computable reals are equivalent if the limit operator is assumed to be computable in the numberings . To answer the question for effective algebras in general, we give a general method based on an algebraic analysis of approximations by elements of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Approximation to measurable functions and its relation to probabilistic computation.Ker-I. Ko - 1986 - Annals of Pure and Applied Logic 30 (2):173-200.
    A theory of approximation to measurable sets and measurable functions based on the concepts of recursion theory and discrete complexity theory is developed. The approximation method uses a model of oracle Turing machines, and so the computational complexity may be defined in a natural way. This complexity measure may be viewed as a formulation of the average-case complexity of real functions—in contrast to the more restrictive worst-case complexity. The relationship between these two complexity measures is further studied and compared with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Point-free topological spaces, functions and recursive points; filter foundation for recursive analysis. I.Iraj Kalantari & Lawrence Welch - 1998 - Annals of Pure and Applied Logic 93 (1-3):125-151.
    In this paper we develop a point-free approach to the study of topological spaces and functions on them, establish platforms for both and present some findings on recursive points. In the first sections of the paper, we obtain conditions under which our approach leads to the generation of ideal objects with which mathematicians work. Next, we apply the effective version of our approach to the real numbers, and make exact connections to the classical approach to recursive reals. In the succeeding (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations