Switch to: References

Add citations

You must login to add citations.
  1. The complexity of the embeddability relation between torsion-free Abelian groups of uncountable size.Filippo Calderoni - 2018 - Journal of Symbolic Logic 83 (2):703-716.
    Download  
     
    Export citation  
     
    Bookmark  
  • Questions on generalised Baire spaces.Yurii Khomskii, Giorgio Laguzzi, Benedikt Löwe & Ilya Sharankou - 2016 - Mathematical Logic Quarterly 62 (4-5):439-456.
    We provide a list of open problems in the research area of generalised Baire spaces, compiled with the help of the participants of two workshops held in Amsterdam (2014) and Hamburg (2015).
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Uncountable structures are not classifiable up to bi-embeddability.Filippo Calderoni, Heike Mildenberger & Luca Motto Ros - 2019 - Journal of Mathematical Logic 20 (1):2050001.
    Answering some of the main questions from [L. Motto Ros, The descriptive set-theoretical complexity of the embeddability relation on models of large size, Ann. Pure Appl. Logic164(12) (2013) 1454–1492], we show that whenever κ is a cardinal satisfying κ<κ=κ>ω, then the embeddability relation between κ-sized structures is strongly invariantly universal, and hence complete for (κ-)analytic quasi-orders. We also prove that in the above result we can further restrict our attention to various natural classes of structures, including (generalized) trees, graphs, or (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On middle box products and paracompact cardinals.David Buhagiar & Mirna Džamonja - 2024 - Annals of Pure and Applied Logic 175 (1):103332.
    Download  
     
    Export citation  
     
    Bookmark  
  • On ‐complete equivalence relations on the generalized Baire space.Tapani Hyttinen & Vadim Kulikov - 2015 - Mathematical Logic Quarterly 61 (1-2):66-81.
    Working with uncountable structures of fixed cardinality, we investigate the complexity of certain equivalence relations and show that if, then many of them are ‐complete, in particular the isomorphism relation of dense linear orders. Then we show that it is undecidable in whether or not the isomorphism relation of a certain well behaved theory (stable, NDOP, NOTOP) is ‐complete (it is, if, but can be forced not to be).
    Download  
     
    Export citation  
     
    Bookmark   5 citations