A good argument is one whose conclusions follow from its premises; its conclusions are consequences of its premises. But in what sense do conclusions follow from premises? What is it for a conclusion to be a consequence of premises? Those questions, in many respects, are at the heart of logic (as a philosophical discipline). Consider the following argument: 1. If we charge high fees for university, only the rich will enroll. We charge high fees for university. Therefore, only the rich (...) will enroll. There are many different things one can say about this argument, but many agree that if we do not equivocate (if the terms mean the same thing in the premises and the conclusion) then the argument is valid, that is, the conclusion follows deductively from the premises. This does not mean that the conclusion is true. Perhaps the premises are not true. However, if the premises are true, then the conclusion is also true, as a matter of logic. This entry is about the relation between premises and conclusions in valid arguments. (shrink)