Switch to: References

Citations of:

Neural Connections, Mental Computations

(ed.)
MIT Press (1989)

Add citations

You must login to add citations.
  1. Approaches to learning and representation.Pat Langley - 1990 - Behavioral and Brain Sciences 13 (3):500-501.
    Download  
     
    Export citation  
     
    Bookmark  
  • Advances in neural network theory.Gérard Toulouse - 1990 - Behavioral and Brain Sciences 13 (3):509-509.
    Download  
     
    Export citation  
     
    Bookmark  
  • Connectionist learning and the challenge of real environments.Mark Weaver & Stephen Kaplan - 1990 - Behavioral and Brain Sciences 13 (3):510-511.
    Download  
     
    Export citation  
     
    Bookmark  
  • Relatively local neurons in a distributed representation: A neurophysiological perspective.Shabtai Barash - 1990 - Behavioral and Brain Sciences 13 (3):489-491.
    Download  
     
    Export citation  
     
    Bookmark  
  • Connectionist models learn what?Timothy van Gelder - 1990 - Behavioral and Brain Sciences 13 (3):509-510.
    Download  
     
    Export citation  
     
    Bookmark  
  • Representational systems and symbolic systems.Gordon D. A. Brown & Mike Oaksford - 1990 - Behavioral and Brain Sciences 13 (3):492-493.
    Download  
     
    Export citation  
     
    Bookmark  
  • A non-empiricist perspective on learning in layered networks.Michael I. Jordan - 1990 - Behavioral and Brain Sciences 13 (3):497-498.
    Download  
     
    Export citation  
     
    Bookmark  
  • Realistic neural nets need to learn iconic representations.W. A. Phillips, P. J. B. Hancock & L. S. Smith - 1990 - Behavioral and Brain Sciences 13 (3):505-505.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Allure of Connectionism Reexamined.B. P. McLaughlin & T. A. Warfield - 1994 - Synthese 101 (3):365 - 400.
    There is currently a debate over whether cognitive architecture is classical or connectionist in nature. One finds the following three comparisons between classical architecture and connectionist architecture made in the pro-connectionist literature in this debate: (1) connectionist architecture is neurally plausible and classical architecture is not; (2) connectionist architecture is far better suited to model pattern recognition capacities than is classical architecture; and (3) connectionist architecture is far better suited to model the acquisition of pattern recognition capacities by learning than (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The allure of connectionism reexamined.Brian P. McLaughlin & F. Warfield - 1994 - Synthese 101 (3):365-400.
    There is currently a debate over whether cognitive architecture is classical or connectionist in nature. One finds the following three comparisons between classical architecture and connectionist architecture made in the pro-connectionist literature in this debate: (1) connectionist architecture is neurally plausible and classical architecture is not; (2) connectionist architecture is far better suited to model pattern recognition capacities than is classical architecture; and (3) connectionist architecture is far better suited to model the acquisition of pattern recognition capacities by learning than (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Learning from learned networks.M. Pavel - 1990 - Behavioral and Brain Sciences 13 (3):503-504.
    Download  
     
    Export citation  
     
    Bookmark  
  • What connectionists learn: Comparisons of model and neural nets.Bruce Bridgeman - 1990 - Behavioral and Brain Sciences 13 (3):491-492.
    Download  
     
    Export citation  
     
    Bookmark  
  • What connectionist models learn: Learning and representation in connectionist networks.Stephen José Hanson & David J. Burr - 1990 - Behavioral and Brain Sciences 13 (3):471-489.
    Connectionist models provide a promising alternative to the traditional computational approach that has for several decades dominated cognitive science and artificial intelligence, although the nature of connectionist models and their relation to symbol processing remains controversial. Connectionist models can be characterized by three general computational features: distinct layers of interconnected units, recursive rules for updating the strengths of the connections during learning, and “simple” homogeneous computing elements. Using just these three features one can construct surprisingly elegant and powerful models of (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Learning and representation: Tensions at the interface.Steven José Hanson - 1990 - Behavioral and Brain Sciences 13 (3):511-518.
    Download  
     
    Export citation  
     
    Bookmark  
  • There is more to learning then meeth the eye.Noel E. Sharkey - 1990 - Behavioral and Brain Sciences 13 (3):506-507.
    Download  
     
    Export citation  
     
    Bookmark  
  • But what is the substance of connectionist representation?James Hendler - 1990 - Behavioral and Brain Sciences 13 (3):496-497.
    Download  
     
    Export citation  
     
    Bookmark  
  • Keeping representations at bay.Stanley Munsat - 1990 - Behavioral and Brain Sciences 13 (3):502-503.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The analysis of the learning needs to be deeper.John E. Rager - 1990 - Behavioral and Brain Sciences 13 (3):505-506.
    Download  
     
    Export citation  
     
    Bookmark  
  • Problems of extension, representation, and computational irreducibility.Patrick Suppes - 1990 - Behavioral and Brain Sciences 13 (3):507-508.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Connectionism and classical computation.Nick Chater - 1990 - Behavioral and Brain Sciences 13 (3):493-494.
    Download  
     
    Export citation  
     
    Bookmark  
  • How connectionist models learn: The course of learning in connectionist networks.John K. Kruschke - 1990 - Behavioral and Brain Sciences 13 (3):498-499.
    Download  
     
    Export citation  
     
    Bookmark  
  • What can psychologists learn from hidden-unit nets?K. Lamberts & G. D'Ydewalle - 1990 - Behavioral and Brain Sciences 13 (3):499-500.
    Download  
     
    Export citation  
     
    Bookmark  
  • Expose hidden assumptions in network theory.Karl Haberlandt - 1990 - Behavioral and Brain Sciences 13 (3):495-496.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Connectionist models: Too little too soon?William Timberlake - 1990 - Behavioral and Brain Sciences 13 (3):508-509.
    Download  
     
    Export citation  
     
    Bookmark  
  • On learnability, empirical foundations, and naturalness.W. J. M. Levelt - 1990 - Behavioral and Brain Sciences 13 (3):501-501.
    Download  
     
    Export citation  
     
    Bookmark  
  • Toward a unification of conditioning and cognition in animal learning.William S. Maki - 1990 - Behavioral and Brain Sciences 13 (3):501-502.
    Download  
     
    Export citation  
     
    Bookmark  
  • Are connectionist models just statistical pattern classifiers?Richard M. Golden - 1990 - Behavioral and Brain Sciences 13 (3):494-495.
    Download  
     
    Export citation  
     
    Bookmark