Switch to: References

Add citations

You must login to add citations.
  1. Mice with finitely many Woodin cardinals from optimal determinacy hypotheses.Sandra Müller, Ralf Schindler & W. Hugh Woodin - 2020 - Journal of Mathematical Logic 20 (Supp01):1950013.
    We prove the following result which is due to the third author. Let [Formula: see text]. If [Formula: see text] determinacy and [Formula: see text] determinacy both hold true and there is no [Formula: see text]-definable [Formula: see text]-sequence of pairwise distinct reals, then [Formula: see text] exists and is [Formula: see text]-iterable. The proof yields that [Formula: see text] determinacy implies that [Formula: see text] exists and is [Formula: see text]-iterable for all reals [Formula: see text]. A consequence is (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Long games and σ-projective sets.Juan P. Aguilera, Sandra Müller & Philipp Schlicht - 2021 - Annals of Pure and Applied Logic 172 (4):102939.
    We prove a number of results on the determinacy of σ-projective sets of reals, i.e., those belonging to the smallest pointclass containing the open sets and closed under complements, countable unions, and projections. We first prove the equivalence between σ-projective determinacy and the determinacy of certain classes of games of variable length <ω^2 (Theorem 2.4). We then give an elementary proof of the determinacy of σ-projective sets from optimal large-cardinal hypotheses (Theorem 4.4). Finally, we show how to generalize the proof (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Forcing the [math]-separation property.Stefan Hoffelner - 2022 - Journal of Mathematical Logic 22 (2).
    Journal of Mathematical Logic, Volume 22, Issue 02, August 2022. We generically construct a model in which the [math]-separation property is true, i.e. every pair of disjoint [math]-sets can be separated by a [math]-definable set. This answers an old question from the problem list “Surrealist landscape with figures” by A. Mathias from 1968. We also construct a model in which the (lightface) [math]-separation property is true.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Optimal proofs of determinacy II.Itay Neeman - 2002 - Journal of Mathematical Logic 2 (2):227-258.
    We present a general lemma which allows proving determinacy from Woodin cardinals. The lemma can be used in many different settings. As a particular application we prove the determinacy of sets in [Formula: see text], n ≥ 1. The assumption we use to prove [Formula: see text] determinacy is optimal in the base theory of [Formula: see text] determinacy.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Recognizable sets and Woodin cardinals: computation beyond the constructible universe.Merlin Carl, Philipp Schlicht & Philip Welch - 2018 - Annals of Pure and Applied Logic 169 (4):312-332.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the prewellorderings associated with the directed systems of mice.Grigor Sargsyan - 2013 - Journal of Symbolic Logic 78 (3):735-763.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Preserving levels of projective determinacy by tree forcings.Fabiana Castiblanco & Philipp Schlicht - 2021 - Annals of Pure and Applied Logic 172 (4):102918.
    We prove that various classical tree forcings—for instance Sacks forcing, Mathias forcing, Laver forcing, Miller forcing and Silver forcing—preserve the statement that every real has a sharp and hence analytic determinacy. We then lift this result via methods of inner model theory to obtain level-by-level preservation of projective determinacy (PD). Assuming PD, we further prove that projective generic absoluteness holds and no new equivalence classes are added to thin projective transitive relations by these forcings.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The consistency strength of successive cardinals with the tree property.Matthew Foreman, Menachem Magidor & Ralf-Dieter Schindler - 2001 - Journal of Symbolic Logic 66 (4):1837-1847.
    If ω n has the tree property for all $2 \leq n and $2^{ , then for all X ∈ H ℵ ω and $n exists.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Determinacy of Blackwell Games.Donald A. Martin - 1998 - Journal of Symbolic Logic 63 (4):1565-1581.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Core Models in the Presence of Woodin Cardinals.Ralf Schindler - 2006 - Journal of Symbolic Logic 71 (4):1145 - 1154.
    Let 0 < n < ω. If there are n Woodin cardinals and a measurable cardinal above, but $M_{n+1}^{\#}$ doesn't exist, then the core model K exists in a sense made precise. An Iterability Inheritance Hypothesis is isolated which is shown to imply an optimal correctness result for K.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Unbounded and dominating reals in Hechler extensions.Justin Palumbo - 2013 - Journal of Symbolic Logic 78 (1):275-289.
    We give results exploring the relationship between dominating and unbounded reals in Hechler extensions, as well as the relationships among the extensions themselves. We show that in the standard Hechler extension there is an unbounded real which is dominated by every dominating real, but that this fails to hold in the tree Hechler extension. We prove a representation theorem for dominating reals in the standard Hechler extension: every dominating real eventually dominates a sandwich composition of the Hechler real with two (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A boundedness lemma for iterations.Greg Hjorth - 2001 - Journal of Symbolic Logic 66 (3):1058-1072.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Three Days of Ω-logic( Mathematical Logic and Its Applications).Paul B. Larson - 2011 - Annals of the Japan Association for Philosophy of Science 19:57-86.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Canonical universes and intuitions about probabilities.Randall Dougherty & Jan Mycielski - 2006 - Dialectica 60 (4):357–368.
    This paper consists of three parts supplementing the papers of K. Hauser 2002 and D. Mumford 2000: There exist regular open sets of points in with paradoxical properties, which are constructed without using the axiom of choice or the continuum hypothesis. There exist canonical universes of sets in which one can define essentially all objects of mathematical analysis and in which all our intuitions about probabilities are true. Models satisfying the full axiom of choice cannot satisfy all those intuitions and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • In inner models with Woodin cardinals.Sandra Müller & Grigor Sargsyan - 2021 - Journal of Symbolic Logic 86 (3):871-896.
    We analyze the hereditarily ordinal definable sets $\operatorname {HOD} $ in $M_n[g]$ for a Turing cone of reals x, where $M_n$ is the canonical inner model with n Woodin cardinals build over x and g is generic over $M_n$ for the Lévy collapse up to its bottom inaccessible cardinal. We prove that assuming $\boldsymbol \Pi ^1_{n+2}$ -determinacy, for a Turing cone of reals x, $\operatorname {HOD} ^{M_n[g]} = M_n,$ where $\mathcal {M}_{\infty }$ is a direct limit of iterates of $M_{n+1}$, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Thin equivalence relations and inner models.Philipp Schlicht - 2014 - Annals of Pure and Applied Logic 165 (10):1577-1625.
    We describe the inner models with representatives in all equivalence classes of thin equivalence relations in a given projective pointclass of even level assuming projective determinacy. The main result shows that these models are characterized by their correctness and the property that they correctly compute the tree from the appropriate scale. The main step towards this characterization shows that the tree from a scale can be reconstructed in a generic extension of an iterate of a mouse. We then construct models (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Σ1(κ)-definable subsets of H.Philipp Lücke, Ralf Schindler & Philipp Schlicht - 2017 - Journal of Symbolic Logic 82 (3):1106-1131.
    We study Σ1-definable sets in the presence of large cardinals. Our results show that the existence of a Woodin cardinal and a measurable cardinal above it imply that no well-ordering of the reals is Σ1-definable, the set of all stationary subsets of ω1 is not Σ1-definable and the complement of every Σ1-definable Bernstein subset of ${}_{}^{{\omega _1}}\omega _1^{}$ is not Σ1-definable. In contrast, we show that the existence of a Woodin cardinal is compatible with the existence of a Σ1-definable well-ordering (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations