Switch to: References

Citations of:

Warning signs of a possible collapse of contemporary mathematics

In Michał Heller & W. H. Woodin (eds.), Infinity: new research frontiers. New York: Cambridge University Press. pp. 76 (2011)

Add citations

You must login to add citations.
  1. The Price of Mathematical Scepticism.Paul Blain Levy - 2022 - Philosophia Mathematica 30 (3):283-305.
    This paper argues that, insofar as we doubt the bivalence of the Continuum Hypothesis or the truth of the Axiom of Choice, we should also doubt the consistency of third-order arithmetic, both the classical and intuitionistic versions. -/- Underlying this argument is the following philosophical view. Mathematical belief springs from certain intuitions, each of which can be either accepted or doubted in its entirety, but not half-accepted. Therefore, our beliefs about reality, bivalence, choice and consistency should all be aligned.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)There is No Standard Model of ZFC and ZFC_2. Part I.Jaykov Foukzon - 2017 - Journal of Advances in Mathematics and Computer Science 2 (26):1-20.
    In this paper we view the first order set theory ZFC under the canonical frst order semantics and the second order set theory ZFC_2 under the Henkin semantics. Main results are: (i) Let M_st^ZFC be a standard model of ZFC, then ¬Con(ZFC + ∃M_st^ZFC ). (ii) Let M_stZFC_2 be a standard model of ZFC2 with Henkin semantics, then ¬Con(ZFC_2 +∃M_stZFC_2). (iii) Let k be inaccessible cardinal then ¬Con(ZFC + ∃κ). In order to obtain the statements (i) and (ii) examples of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Inconsistent Countable Set in Second Order ZFC and Nonexistence of the Strongly Inaccessible Cardinals.Jaykov Foukzon - 2015 - British Journal of Mathematics and Computer Science 9 (5):380-393.
    In this article we derived an important example of the inconsistent countable set in second order ZFC (ZFC_2) with the full second-order semantics. Main results: (i) :~Con(ZFC2_); (ii) let k be an inaccessible cardinal, V is an standard model of ZFC (ZFC_2) and H_k is a set of all sets having hereditary size less then k; then : ~Con(ZFC + E(V)(V = Hk)):.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Understanding, Expression and Unwelcome Logic.Štěpán Holub - 2020 - Studia Semiotyczne 34 (1):183-202.
    In this paper I will attempt to explain why the controversy surrounding the alleged refutation of Mechanism by Gödel’s theorem is continuing even after its unanimous refutation by logicians. I will argue that the philosophical point its proponents want to establish is a necessary gap between the intended meaning and its formulation. Such a gap is the main tenet of philosophical hermeneutics. While Gödel’s theorem does not disprove Mechanism, it is nevertheless an important illustration of the hermeneutic principle. The ongoing (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Pattern of the Global Map of Science: A Matter of Contingency?Cédric Gaucherel - 2019 - Open Journal of Philosophy 9 (2):82-103.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Belief Expressionist Explanation of Divine Conceptualist Mathematics.David M. Freeman - 2022 - Metaphysica 23 (1):15-26.
    Many have pointed out that the utility of mathematical objects is somewhat disconnected from their ontological status. For example, one might argue that arithmetic is useful whether or not numbers exist. We explore this phenomenon in the context of Divine Conceptualism, which claims that mathematical objects exist as thoughts in the divine mind. While not arguing against DC claims, we argue that DC claims can lead to epistemological uncertainty regarding the ontological status of mathematical objects. This weakens DC attempts to (...)
    Download  
     
    Export citation  
     
    Bookmark