Switch to: References

Add citations

You must login to add citations.
  1. Proofs, pictures, and Euclid.John Mumma - 2010 - Synthese 175 (2):255 - 287.
    Though pictures are often used to present mathematical arguments, they are not typically thought to be an acceptable means for presenting mathematical arguments rigorously. With respect to the proofs in the Elements in particular, the received view is that Euclid's reliance on geometric diagrams undermines his efforts to develop a gap-free deductive theory. The central difficulty concerns the generality of the theory. How can inferences made from a particular diagrams license general mathematical results? After surveying the history behind the received (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • A formal system for euclid’s elements.Jeremy Avigad, Edward Dean & John Mumma - 2009 - Review of Symbolic Logic 2 (4):700--768.
    We present a formal system, E, which provides a faithful model of the proofs in Euclid's Elements, including the use of diagrammatic reasoning.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • The twofold role of diagrams in Euclid’s plane geometry.Marco Panza - 2012 - Synthese 186 (1):55-102.
    Proposition I.1 is, by far, the most popular example used to justify the thesis that many of Euclid’s geometric arguments are diagram-based. Many scholars have recently articulated this thesis in different ways and argued for it. My purpose is to reformulate it in a quite general way, by describing what I take to be the twofold role that diagrams play in Euclid’s plane geometry (EPG). Euclid’s arguments are object-dependent. They are about geometric objects. Hence, they cannot be diagram-based unless diagrams (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Styles of Reasoning, Human Forms of Life, and Relativism.Luca Sciortino - 2016 - International Studies in the Philosophy of Science 30 (2):165-184.
    The question as to whether Ian Hacking’s project of scientific styles of thinking entails epistemic relativism has received considerable attention. However, scholars have never discussed it vis-à-vis Wittgenstein. This is unfortunate: not only is Wittgenstein the philosopher who, together with Foucault, has influenced Hacking the most, but he has also faced the same accusation of ‘relativism’. I shall explore the conceptual similarities and differences between Hacking’s notion of style of thinking and Wittgenstein’s conception of form of life. It is a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Diagrams in mathematics: history and philosophy.John Mumma & Marco Panza - 2012 - Synthese 186 (1):1-5.
    Diagrams are ubiquitous in mathematics. From the most elementary class to the most advanced seminar, in both introductory textbooks and professional journals, diagrams are present, to introduce concepts, increase understanding, and prove results. They thus fulfill a variety of important roles in mathematical practice. Long overlooked by philosophers focused on foundational and ontological issues, these roles have come to receive attention in the past two decades, a trend in line with the growing philosophical interest in actual mathematical practice.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Arrows in Comprehending and Producing Mechanical Diagrams.Julie Heiser & Barbara Tversky - 2006 - Cognitive Science 30 (3):581-592.
    Mechanical systems have structural organizations—parts, and their relations—and functional organizations—temporal, dynamic, and causal processes—which can be explained using text or diagrams. Two experiments illustrate the role of arrows in diagrams of mechanical systems. In Experiment 1, people described diagrams with or without arrows, interpreting diagrams without arrows as conveying structural information and diagrams with arrows as conveying functional information. In Experiment 2, people produced sketches of mechanical systems from structural or functional descriptions. People spontaneously used arrows to indicate functional processes (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Traditional Logic, Modern Logic and Natural Language.Wilfrid Hodges - 2009 - Journal of Philosophical Logic 38 (6):589-606.
    In a recent paper Johan van Benthem reviews earlier work done by himself and colleagues on ‘natural logic’. His paper makes a number of challenging comments on the relationships between traditional logic, modern logic and natural logic. I respond to his challenge, by drawing what I think are the most significant lines dividing traditional logic from modern. The leading difference is in the way logic is expected to be used for checking arguments. For traditionals the checking is local, i.e. separately (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Anti-psychologism about Necessity: Friedrich Albert Lange on Objective Inference.Lydia Patton - 2011 - History and Philosophy of Logic 32 (2):139 - 152.
    In the nineteenth century, the separation of naturalist or psychological accounts of validity from normative validity came into question. In his 1877 Logical Studies (Logische Studien), Friedrich Albert Lange argues that the basis for necessary inference is demonstration, which takes place by spatially delimiting the extension of concepts using imagined or physical diagrams. These diagrams are signs or indications of concepts' extension, but do not represent their content. Only the inference as a whole captures the objective content of the proof. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mathematical arguments in context.Jean Paul Van Bendegem & Bart Van Kerkhove - 2009 - Foundations of Science 14 (1-2):45-57.
    Except in very poor mathematical contexts, mathematical arguments do not stand in isolation of other mathematical arguments. Rather, they form trains of formal and informal arguments, adding up to interconnected theorems, theories and eventually entire fields. This paper critically comments on some common views on the relation between formal and informal mathematical arguments, most particularly applications of Toulmin’s argumentation model, and launches a number of alternative ideas of presentation inviting the contextualization of pieces of mathematical reasoning within encompassing bodies of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Idealization and external symbolic storage: the epistemic and technical dimensions of theoretic cognition.Peter Woelert - 2012 - Phenomenology and the Cognitive Sciences 11 (3):335-366.
    This paper explores some of the constructive dimensions and specifics of human theoretic cognition, combining perspectives from (Husserlian) genetic phenomenology and distributed cognition approaches. I further consult recent psychological research concerning spatial and numerical cognition. The focus is on the nexus between the theoretic development of abstract, idealized geometrical and mathematical notions of space and the development and effective use of environmental cognitive support systems. In my discussion, I show that the evolution of the theoretic cognition of space apparently follows (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Intuition and visualization in mathematical problem solving.Valeria Giardino - 2010 - Topoi 29 (1):29-39.
    In this article, I will discuss the relationship between mathematical intuition and mathematical visualization. I will argue that in order to investigate this relationship, it is necessary to consider mathematical activity as a complex phenomenon, which involves many different cognitive resources. I will focus on two kinds of danger in recurring to visualization and I will show that they are not a good reason to conclude that visualization is not reliable, if we consider its use in mathematical practice. Then, I (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Human Rationality Challenges Universal Logic.Brian R. Gaines - 2010 - Logica Universalis 4 (2):163-205.
    Tarski’s conceptual analysis of the notion of logical consequence is one of the pinnacles of the process of defining the metamathematical foundations of mathematics in the tradition of his predecessors Euclid, Frege, Russell and Hilbert, and his contemporaries Carnap, Gödel, Gentzen and Turing. However, he also notes that in defining the concept of consequence “efforts were made to adhere to the common usage of the language of every day life.” This paper addresses the issue of what relationship Tarski’s analysis, and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • From Quantum Gravity to Classical Phenomena.Michael Esfeld & Antonio Vassallo - 2013 - In Tilman Sauer & Adrian Wüthrich (eds.), New Vistas on Old Problems. Max Planck Research Library for the History and Development of Knowledge.
    Quantum gravity is supposed to be the most fundamental theory, including a quantum theory of the metrical field (spacetime). However, it is not clear how a quantum theory of gravity could account for classical phenomena, including notably measurement outcomes. But all the evidence that we have for a physical theory is based on measurement outcomes. We consider this problem in the framework of canonical quantum gravity, pointing out a dilemma: all the available accounts that admit classical phenomena presuppose entities with (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Omnipresence, Multipresence and Ubiquity: Kinds of Generality in and Around Mathematics and Logics. [REVIEW]I. Grattan-Guinness - 2011 - Logica Universalis 5 (1):21-73.
    A prized property of theories of all kinds is that of generality, of applicability or least relevance to a wide range of circumstances and situations. The purpose of this article is to present a pair of distinctions that suggest that three kinds of generality are to be found in mathematics and logics, not only at some particular period but especially in developments that take place over time: ‘omnipresent’ and ‘multipresent’ theories, and ‘ubiquitous’ notions that form dependent parts, or moments, of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations