Switch to: References

Add citations

You must login to add citations.
  1. Upper bounds on ideals in the computably enumerable Turing degrees.George Barmpalias & André Nies - 2011 - Annals of Pure and Applied Logic 162 (6):465-473.
    We study ideals in the computably enumerable Turing degrees, and their upper bounds. Every proper ideal in the c.e. Turing degrees has an incomplete upper bound. It follows that there is no prime ideal in the c.e. Turing degrees. This answers a question of Calhoun [2]. Every proper ideal in the c.e. Turing degrees has a low2 upper bound. Furthermore, the partial order of ideals under inclusion is dense.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Strong Jump-Traceability.Noam Greenberg & Dan Turetsky - 2018 - Bulletin of Symbolic Logic 24 (2):147-164.
    We review the current knowledge concerning strong jump-traceability. We cover the known results relating strong jump-traceability to randomness, and those relating it to degree theory. We also discuss the techniques used in working with strongly jump-traceable sets. We end with a section of open questions.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Benign cost functions and lowness properties.Noam Greenberg & André Nies - 2011 - Journal of Symbolic Logic 76 (1):289 - 312.
    We show that the class of strongly jump-traceable c.e. sets can be characterised as those which have sufficiently slow enumerations so they obey a class of well-behaved cost functions, called benign. This characterisation implies the containment of the class of strongly jump-traceable c.e. Turing degrees in a number of lowness classes, in particular the classes of the degrees which lie below incomplete random degrees, indeed all LR-hard random degrees, and all ω-c.e. random degrees. The last result implies recent results of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Computing from projections of random points.Noam Greenberg, Joseph S. Miller & André Nies - 2019 - Journal of Mathematical Logic 20 (1):1950014.
    We study the sets that are computable from both halves of some (Martin–Löf) random sequence, which we call 1/2-bases. We show that the collection of such sets forms an ideal in the Turing degrees that is generated by its c.e. elements. It is a proper subideal of the K-trivial sets. We characterize 1/2-bases as the sets computable from both halves of Chaitin’s Ω, and as the sets that obey the cost function c(x,s)=Ωs−Ωx−−−−−−−√. Generalizing these results yields a dense hierarchy of (...)
    Download  
     
    Export citation  
     
    Bookmark