Switch to: References

Add citations

You must login to add citations.
  1. Cylindric modal logic.Yde Venema - 1995 - Journal of Symbolic Logic 60 (2):591-623.
    Treating the existential quantification ∃ν i as a diamond $\diamond_i$ and the identity ν i = ν j as a constant δ ij , we study restricted versions of first order logic as if they were modal formalisms. This approach is closely related to algebraic logic, as the Kripke frames of our system have the type of the atom structures of cylindric algebras; the full cylindric set algebras are the complex algebras of the intended multidimensional frames called cubes. The main (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • (1 other version)Complexity of equational theory of relational algebras with standard projection elements.Szabolcs Mikulás, Ildikó Sain & András Simon - 2015 - Synthese 192 (7):2159-2182.
    The class $$\mathsf{TPA}$$ TPA of t rue p airing a lgebras is defined to be the class of relation algebras expanded with concrete set theoretical projection functions. The main results of the present paper is that neither the equational theory of $$\mathsf{TPA}$$ TPA nor the first order theory of $$\mathsf{TPA}$$ TPA are decidable. Moreover, we show that the set of all equations valid in $$\mathsf{TPA}$$ TPA is exactly on the $$\Pi ^1_1$$ Π 1 1 level. We consider the class $$\mathsf{TPA}^-$$ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Multi-dimensional modal logic.Maarten Marx - 1996 - Boston, Mass.: Kluwer Academic Publishers. Edited by Yde Venema.
    Over the last twenty years, in all of these neighbouring fields, modal systems have been developed that we call multi-dimensional. (Our definition of multi ...
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Algebraization of quantifier logics, an introductory overview.István Németi - 1991 - Studia Logica 50 (3):485 - 569.
    This paper is an introduction: in particular, to algebras of relations of various ranks, and in general, to the part of algebraic logic algebraizing quantifier logics. The paper has a survey character, too. The most frequently used algebras like cylindric-, relation-, polyadic-, and quasi-polyadic algebras are carefully introduced and intuitively explained for the nonspecialist. Their variants, connections with logic, abstract model theory, and further algebraic logics are also reviewed. Efforts were made to make the review part relatively comprehensive. In some (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Complexity of equations valid in algebras of relations part I: Strong non-finitizability.Hajnal Andréka - 1997 - Annals of Pure and Applied Logic 89 (2):149-209.
    We study algebras whose elements are relations, and the operations are natural “manipulations” of relations. This area goes back to 140 years ago to works of De Morgan, Peirce, Schröder . Well known examples of algebras of relations are the varieties RCAn of cylindric algebras of n-ary relations, RPEAn of polyadic equality algebras of n-ary relations, and RRA of binary relations with composition. We prove that any axiomatization, say E, of RCAn has to be very complex in the following sense: (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • (1 other version)Complexity of equational theory of relational algebras with projection elements.Szabolcs Mikulás, Ildikó Sain & Andras Simon - 1992 - Bulletin of the Section of Logic 21 (3):103-111.
    The class \ of t rue p airing a lgebras is defined to be the class of relation algebras expanded with concrete set theoretical projection functions. The main results of the present paper is that neither the equational theory of \ nor the first order theory of \ are decidable. Moreover, we show that the set of all equations valid in \ is exactly on the \ level. We consider the class \ of the relation algebra reducts of \ ’s, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Weakly associative relation algebras with projections.Agi Kurucz - 2009 - Mathematical Logic Quarterly 55 (2):138-153.
    Built on the foundations laid by Peirce, Schröder, and others in the 19th century, the modern development of relation algebras started with the work of Tarski and his colleagues [21, 22]. They showed that relation algebras can capture strong first‐order theories like ZFC, and so their equational theory is undecidable. The less expressive class WA of weakly associative relation algebras was introduced by Maddux [7]. Németi [16] showed that WA's have a decidable universal theory. There has been extensive research on (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Non-finite-axiomatizability results in algebraic logic.Balázs Biró - 1992 - Journal of Symbolic Logic 57 (3):832 - 843.
    Download  
     
    Export citation  
     
    Bookmark   16 citations