Switch to: References

Citations of:

Shortened version appeared as

Studia Logica 50 (3-4):458-569 (1991)

Add citations

You must login to add citations.
  1. Complexity of equations valid in algebras of relations part I: Strong non-finitizability.Hajnal Andréka - 1997 - Annals of Pure and Applied Logic 89 (2):149-209.
    We study algebras whose elements are relations, and the operations are natural “manipulations” of relations. This area goes back to 140 years ago to works of De Morgan, Peirce, Schröder . Well known examples of algebras of relations are the varieties RCAn of cylindric algebras of n-ary relations, RPEAn of polyadic equality algebras of n-ary relations, and RRA of binary relations with composition. We prove that any axiomatization, say E, of RCAn has to be very complex in the following sense: (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Complexity of equations valid in algebras of relations part II: Finite axiomatizations.Hajnal Andréka - 1997 - Annals of Pure and Applied Logic 89 (2-3):211-229.
    We study algebras whose elements are relations, and the operations are natural “manipulations” of relations. This area goes back to 140 years ago to works of De Morgan, Peirce, Schröder . Well known examples of algebras of relations are the varieties RCAn of cylindric algebras of n-ary relations, RPEAn of polyadic equality algebras of n-ary relations, and RRA of binary relations with composition. We prove that any axiomatization, say E, of RCAn has to be very complex in the following sense: (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Many-dimensional arrow logics.Dimiter Vakarelov - 1996 - Journal of Applied Non-Classical Logics 6 (4):303-345.
    ABSTRACT The notion of n-dimensional arrow structure is introduced, which for n = 2 coincides with the notion of directed multi-graph. In part I of the paper several first-order and modal languages connected with arrow structures are studied and their expressive power is compared. Part II is devoted to the axiomatization of some arrow logics. At the end some further perspectives of ?arrow approach? are discussed.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Squares in Fork Arrow Logic.Renata P. de Freitas, Jorge P. Viana, Mario R. F. Benevides, Sheila R. M. Veloso & Paulo A. S. Veloso - 2003 - Journal of Philosophical Logic 32 (4):343-355.
    In this paper we show that the class of fork squares has a complete orthodox axiomatization in fork arrow logic (FAL). This result may be seen as an orthodox counterpart of Venema's non-orthodox axiomatization for the class of squares in arrow logic. FAL is the modal logic of fork algebras (FAs) just as arrow logic is the modal logic of relation algebras (RAs). FAs extend RAs by a binary fork operator and are axiomatized by adding three equations to RAs equational (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation