Switch to: References

Add citations

You must login to add citations.
  1. The Cognitive Basis of Computation: Putting Computation in Its Place.Daniel D. Hutto, Erik Myin, Anco Peeters & Farid Zahnoun - 2018 - In Mark Sprevak & Matteo Colombo (eds.), The Routledge Handbook of the Computational Mind. Routledge. pp. 272-282.
    The mainstream view in cognitive science is that computation lies at the basis of and explains cognition. Our analysis reveals that there is no compelling evidence or argument for thinking that brains compute. It makes the case for inverting the explanatory order proposed by the computational basis of cognition thesis. We give reasons to reverse the polarity of standard thinking on this topic, and ask how it is possible that computation, natural and artificial, might be based on cognition and not (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Review of Physical Computation: A Mechanistic Account by Gualtiero Piccinini - Gualtiero Piccinini, Physical Computation: A Mechanistic Account. Oxford: Oxford University Press (2015), 313 pp., $65.00 (cloth). [REVIEW]Oron Shagrir - 2017 - Philosophy of Science 84 (3):604-612.
    Download  
     
    Export citation  
     
    Bookmark  
  • In defense of the semantic view of computation.Oron Shagrir - 2020 - Synthese 197 (9):4083-4108.
    The semantic view of computation is the claim that semantic properties play an essential role in the individuation of physical computing systems such as laptops and brains. The main argument for the semantic view rests on the fact that some physical systems simultaneously implement different automata at the same time, in the same space, and even in the very same physical properties. Recently, several authors have challenged this argument. They accept the premise of simultaneous implementation but reject the semantic conclusion. (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • A theory of computational implementation.Michael Rescorla - 2014 - Synthese 191 (6):1277-1307.
    I articulate and defend a new theory of what it is for a physical system to implement an abstract computational model. According to my descriptivist theory, a physical system implements a computational model just in case the model accurately describes the system. Specifically, the system must reliably transit between computational states in accord with mechanical instructions encoded by the model. I contrast my theory with an influential approach to computational implementation espoused by Chalmers, Putnam, and others. I deploy my theory (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The semantic view of computation and the argument from the cognitive science practice.Alfredo Paternoster & Fabrizio Calzavarini - 2022 - Synthese 200 (2):1-24.
    According to the semantic view of computation, computations cannot be individuated without invoking semantic properties. A traditional argument for the semantic view is what we shall refer to as the argument from the cognitive science practice. In its general form, this argument rests on the idea that, since cognitive scientists describe computations (in explanations and theories) in semantic terms, computations are individuated semantically. Although commonly invoked in the computational literature, the argument from the cognitive science practice has never been discussed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Why go for a computation-based approach to cognitive representation.Dimitri Coelho Mollo - 2021 - Synthese 199 (3-4):6875-6895.
    An influential view in cognitive science is that computation in cognitive systems is semantic, conceptually depending on representation: to compute is to manipulate representations. I argue that accepting the non-semantic teleomechanistic view of computation lays the ground for a promising alternative strategy, in which computation helps to explain and naturalise representation, rather than the other way around. I show that this computation-based approach to representation presents six decisive advantages over the semantic view. I claim that it can improve the two (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mechanisms, Wide Functions, and Content: Towards a Computational Pluralism.Jonny Lee - 2021 - British Journal for the Philosophy of Science 72 (1):221-244.
    In recent years, the ‘mechanistic view’ has developed as a popular alternative to the ‘semantic view’ concerning the identity of physical computation. However, semanticists have provided powerful arguments that suggest the mechanistic view fails to deliver essential distinctions between paradigmatic computational operations. This article reviews responses on behalf of the mechanist and uses this opportunity to propose a type of pluralism about computational identity. This pluralism contends that there are multiple ‘levels’ of properties and relations pertaining to computation that can (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • What is a Simulation Model?Juan M. Durán - 2020 - Minds and Machines 30 (3):301-323.
    Many philosophical accounts of scientific models fail to distinguish between a simulation model and other forms of models. This failure is unfortunate because there are important differences pertaining to their methodology and epistemology that favor their philosophical understanding. The core claim presented here is that simulation models are rich and complex units of analysis in their own right, that they depart from known forms of scientific models in significant ways, and that a proper understanding of the type of model simulations (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Structuralism, indiscernibility, and physical computation.F. T. Doherty & J. Dewhurst - 2022 - Synthese 200 (3):1-26.
    Structuralism about mathematical objects and structuralist accounts of physical computation both face indeterminacy objections. For the former, the problem arises for cases such as the complex roots i and \, for which a automorphism can be defined, thus establishing the structural identity of these importantly distinct mathematical objects. In the case of the latter, the problem arises for logical duals such as AND and OR, which have invertible structural profiles :369–400, 2001). This makes their physical implementations indeterminate, in the sense (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Why Do We Need a Theory of Implementation?André Curtis-Trudel - 2022 - British Journal for the Philosophy of Science 73 (4):1067-1091.
    The received view of computation is methodologically bifurcated: it offers different accounts of computation in the mathematical and physical cases. But little in the way of argument has been given for this approach. This article rectifies the situation by arguing that the alternative, a unified account, is untenable. Furthermore, once these issues are brought into sharper relief we can see that work remains to be done to illuminate the relationship between physical and mathematical computation.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The determinacy of computation.André Curtis-Trudel - 2022 - Synthese 200 (1):1-28.
    A skeptical worry known as ‘the indeterminacy of computation’ animates much recent philosophical reflection on the computational identity of physical systems. On the one hand, computational explanation seems to require that physical computing systems fall under a single, unique computational description at a time. On the other, if a physical system falls under any computational description, it seems to fall under many simultaneously. Absent some principled reason to take just one of these descriptions in particular as relevant for computational explanation, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The philosophy of computer science.Raymond Turner - 2013 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The computational theory of mind.Steven Horst - 2005 - Stanford Encyclopedia of Philosophy.
    Over the past thirty years, it is been common to hear the mind likened to a digital computer. This essay is concerned with a particular philosophical view that holds that the mind literally is a digital computer (in a specific sense of “computer” to be developed), and that thought literally is a kind of computation. This view—which will be called the “Computational Theory of Mind” (CTM)—is thus to be distinguished from other and broader attempts to connect the mind with computation, (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Against Artifactual Epistemic Privilege.Víctor M. Verdejo - 2014 - Critica 46 (136):43-67.
    Las profundas raíces intencionales de los artefactos y sus tipos parecen apoyar intuitiva y filosóficamente una forma de privilegio epistémico de los hacedores con respecto a los objetos que crean. En este artículo examino críticamente la tesis del privilegio epistémico para los creadores de artefactos y presento un contraejemplo basado en el antiindividualismo. Se consideran diversas objeciones a las que se da respuesta. Concluyo que si el antiindividualismo es verdadero, entonces el supuesto privilegio epistémico de los creadores de artefactos o (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation