Switch to: References

Add citations

You must login to add citations.
  1. On the decidability of the theories of the arithmetic and hyperarithmetic degrees as uppersemilattices.James S. Barnes - 2017 - Journal of Symbolic Logic 82 (4):1496-1518.
    We establish the decidability of the${{\rm{\Sigma }}_2}$theory of both the arithmetic and hyperarithmetic degrees in the language of uppersemilattices, i.e., the language with ≤, 0, and$\sqcup$. This is achieved by using Kumabe-Slaman forcing, along with other known results, to show given finite uppersemilattices${\cal M}$and${\cal N}$, where${\cal M}$is a subuppersemilattice of${\cal N}$, that every embedding of${\cal M}$into either degree structure extends to one of${\cal N}$iff${\cal N}$is an end-extension of${\cal M}$.
    Download  
     
    Export citation  
     
    Bookmark  
  • Partially definable forcing and bounded arithmetic.Albert Atserias & Moritz Müller - 2015 - Archive for Mathematical Logic 54 (1):1-33.
    We describe a method of forcing against weak theories of arithmetic and its applications in propositional proof complexity.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Complexity of the -query Tautologies in the Presence of a Generic Oracle.Toshio Suzuki - 2000 - Notre Dame Journal of Formal Logic 41 (2):142-151.
    Extending techniques of Dowd and those of Poizat, we study computational complexity of in the case when is a generic oracle, where is a positive integer, and denotes the collection of all -query tautologies with respect to an oracle . We introduce the notion of ceiling-generic oracles, as a generalization of Dowd's notion of -generic oracles to arbitrary finitely testable arithmetical predicates. We study how existence of ceiling-generic oracles affects behavior of a generic oracle, by which we show that is (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Non-Tightness in Class Theory and Second-Order Arithmetic.Alfredo Roque Freire & Kameryn J. Williams - forthcoming - Journal of Symbolic Logic:1-28.
    A theory T is tight if different deductively closed extensions of T (in the same language) cannot be bi-interpretable. Many well-studied foundational theories are tight, including $\mathsf {PA}$ [39], $\mathsf {ZF}$, $\mathsf {Z}_2$, and $\mathsf {KM}$ [6]. In this article we extend Enayat’s investigations to subsystems of these latter two theories. We prove that restricting the Comprehension schema of $\mathsf {Z}_2$ and $\mathsf {KM}$ gives non-tight theories. Specifically, we show that $\mathsf {GB}$ and $\mathsf {ACA}_0$ each admit different bi-interpretable extensions, (...)
    Download  
     
    Export citation  
     
    Bookmark