Switch to: References

Add citations

You must login to add citations.
  1. Varieties of Relevant S5.Shawn Standefer - 2023 - Logic and Logical Philosophy 32 (1):53–80.
    In classically based modal logic, there are three common conceptions of necessity, the universal conception, the equivalence relation conception, and the axiomatic conception. They provide distinct presentations of the modal logic S5, all of which coincide in the basic modal language. We explore these different conceptions in the context of the relevant logic R, demonstrating where they come apart. This reveals that there are many options for being an S5-ish extension of R. It further reveals a divide between the universal (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Labelled Sequent Calculi for Lewis’ Non-normal Propositional Modal Logics.Matteo Tesi - 2020 - Studia Logica 109 (4):725-757.
    C. I. Lewis’ systems were the first axiomatisations of modal logics. However some of those systems are non-normal modal logics, since they do not admit a full rule of necessitation, but only a restricted version thereof. We provide G3-style labelled sequent calculi for Lewis’ non-normal propositional systems. The calculi enjoy good structural properties, namely admissibility of structural rules and admissibility of cut. Furthermore they allow for straightforward proofs of admissibility of the restricted versions of the necessitation rule. We establish completeness (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Cut-free completeness for modular hypersequent calculi for modal logics K, T, and D.Samara Burns & Richard Zach - 2021 - Review of Symbolic Logic 14 (4):910-929.
    We investigate a recent proposal for modal hypersequent calculi. The interpretation of relational hypersequents incorporates an accessibility relation along the hypersequent. These systems give the same interpretation of hypersequents as Lellman's linear nested sequents, but were developed independently by Restall for S5 and extended to other normal modal logics by Parisi. The resulting systems obey Došen's principle: the modal rules are the same across different modal logics. Different modal systems only differ in the presence or absence of external structural rules. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Hypersequent Solution to the Inferentialist Problem of Modality.Andrew Parisi - 2022 - Erkenntnis 87 (4):1605-1633.
    The standard inferentialist approaches to modal logic tend to suffer from not being able to uniquely characterize the modal operators, require that introduction and elimination rules be interdefined, or rely on the introduction of possible-world like indexes into the object language itself. In this paper I introduce a hypersequent calculus that is flexible enough to capture many of the standard modal logics and does not suffer from the above problems. It is therefore an ideal candidate to underwrite an inferentialist theory (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Gentzen and Jaśkowski Natural Deduction: Fundamentally Similar but Importantly Different.Allen P. Hazen & Francis Jeffry Pelletier - 2014 - Studia Logica 102 (6):1103-1142.
    Gentzen’s and Jaśkowski’s formulations of natural deduction are logically equivalent in the normal sense of those words. However, Gentzen’s formulation more straightforwardly lends itself both to a normalization theorem and to a theory of “meaning” for connectives . The present paper investigates cases where Jaskowski’s formulation seems better suited. These cases range from the phenomenology and epistemology of proof construction to the ways to incorporate novel logical connectives into the language. We close with a demonstration of this latter aspect by (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Interpolation Theorem for intuitionistic S4.Branislav R. Boricic - 1991 - Bulletin of the Section of Logic 20 (1):2-6.
    Download  
     
    Export citation  
     
    Bookmark  
  • Frontiers of Conditional Logic.Yale Weiss - 2019 - Dissertation, The Graduate Center, City University of New York
    Conditional logics were originally developed for the purpose of modeling intuitively correct modes of reasoning involving conditional—especially counterfactual—expressions in natural language. While the debate over the logic of conditionals is as old as propositional logic, it was the development of worlds semantics for modal logic in the past century that catalyzed the rapid maturation of the field. Moreover, like modal logic, conditional logic has subsequently found a wide array of uses, from the traditional (e.g. counterfactuals) to the exotic (e.g. conditional (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Game logic and its applications II.Mamoru Kaneko & Takashi Nagashima - 1997 - Studia Logica 58 (2):273-303.
    This paper provides a Genzten style formulation of the game logic framework GLm (0 m ), and proves the cut-elimination theorem for GLm. As its application, we prove the term existence theorem for GL used in Part I.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A Deep Inference System for the Modal Logic S5.Phiniki Stouppa - 2007 - Studia Logica 85 (2):199-214.
    We present a cut-admissible system for the modal logic S5 in a formalism that makes explicit and intensive use of deep inference. Deep inference is induced by the methods applied so far in conceptually pure systems for this logic. The system enjoys systematicity and modularity, two important properties that should be satisfied by modal systems. Furthermore, it enjoys a simple and direct design: the rules are few and the modal rules are in exact correspondence to the modal axioms.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Modal Multilattice Logic.Norihiro Kamide & Yaroslav Shramko - 2017 - Logica Universalis 11 (3):317-343.
    A modal extension of multilattice logic, called modal multilattice logic, is introduced as a Gentzen-type sequent calculus \. Theorems for embedding \ into a Gentzen-type sequent calculus S4C and vice versa are proved. The cut-elimination theorem for \ is shown. A Kripke semantics for \ is introduced, and the completeness theorem with respect to this semantics is proved. Moreover, the duality principle is proved as a characteristic property of \.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Why does the proof-theory of hybrid logic work so well?Torben Braüner - 2007 - Journal of Applied Non-Classical Logics 17 (4):521-543.
    This is primarily a conceptual paper. The goal of the paper is to put into perspective the proof-theory of hybrid logic and in particular, try to give an answer to the following question: Why does the proof-theory of hybrid logic work so well compared to the proof-theory of ordinary modal logic?Roughly, there are two different kinds of proof systems for modal logic: Systems where the formulas involved in the rules are formulas of the object language, that is, ordinary modal-logical formulas, (...)
    Download  
     
    Export citation  
     
    Bookmark