Switch to: References

Add citations

You must login to add citations.
  1. Counterpossibles in Science: The Case of Relative Computability.Matthias Jenny - 2018 - Noûs 52 (3):530-560.
    I develop a theory of counterfactuals about relative computability, i.e. counterfactuals such as 'If the validity problem were algorithmically decidable, then the halting problem would also be algorithmically decidable,' which is true, and 'If the validity problem were algorithmically decidable, then arithmetical truth would also be algorithmically decidable,' which is false. These counterfactuals are counterpossibles, i.e. they have metaphysically impossible antecedents. They thus pose a challenge to the orthodoxy about counterfactuals, which would treat them as uniformly true. What’s more, I (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • The interactive nature of computing: Refuting the strong church–turing thesis. [REVIEW]Dina Goldin & Peter Wegner - 2008 - Minds and Machines 18 (1):17-38.
    The classical view of computing positions computation as a closed-box transformation of inputs (rational numbers or finite strings) to outputs. According to the interactive view of computing, computation is an ongoing interactive process rather than a function-based transformation of an input to an output. Specifically, communication with the outside world happens during the computation, not before or after it. This approach radically changes our understanding of what is computation and how it is modeled. The acceptance of interaction as a new (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • “Surveyability” in Hilbert, Wittgenstein and Turing.Juliet Floyd - 2023 - Philosophies 8 (1):6.
    An investigation of the concept of “surveyability” as traced through the thought of Hilbert, Wittgenstein, and Turing. The communicability and reproducibility of proof, with certainty, are seen as earmarked by the “surveyability” of symbols, sequences, and structures of proof in all these thinkers. Hilbert initiated the idea within his metamathematics, Wittgenstein took up a kind of game formalism in the 1920s and early 1930s in response. Turing carried Hilbert’s conception of the “surveyability” of proof in metamathematics through into his analysis (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege’s ‘On the Foundations of Geometry’ and Axiomatic Metatheory.Günther Eder - 2016 - Mind 125 (497):5-40.
    In a series of articles dating from 1903 to 1906, Frege criticizes Hilbert’s methodology of proving the independence and consistency of various fragments of Euclidean geometry in his Foundations of Geometry. In the final part of the last article, Frege makes his own proposal as to how the independence of genuine axioms should be proved. Frege contends that independence proofs require the development of a ‘new science’ with its own basic truths. This paper aims to provide a reconstruction of this (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations