Switch to: References

Add citations

You must login to add citations.
  1. Classical Versus Quantum Probability in Sequential Measurements.Charis Anastopoulos - 2006 - Foundations of Physics 36 (11):1601-1661.
    We demonstrate in this paper that the probabilities for sequential measurements have features very different from those of single-time measurements. First, they cannot be modelled by a classical stochastic process. Second, they are contextual, namely they depend strongly on the specific measurement scheme through which they are determined. We construct Positive-Operator-Valued measures (POVM) that provide such probabilities. For observables with continuous spectrum, the constructed POVMs depend strongly on the resolution of the measurement device, a conclusion that persists even if we (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)The role of decoherence in quantum mechanics.Guido Bacciagaluppi - 2003 - Stanford Encyclopedia of Philosophy.
    Interference phenomena are a well-known and crucial feature of quantum mechanics, the two-slit experiment providing a standard example. There are situations, however, in which interference effects are (artificially or spontaneously) suppressed. We shall need to make precise what this means, but the theory of decoherence is the study of (spontaneous) interactions between a system and its environment that lead to such suppression of interference. This study includes detailed modelling of system-environment interactions, derivation of equations (‘master equations’) for the (reduced) state (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations