Switch to: References

Add citations

You must login to add citations.
  1. Foundation versus Induction in Kripke-Platek Set Theory.Domenico Zambella - 1998 - Journal of Symbolic Logic 63 (4):1399-1403.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • 1995 European Summer Meeting of the Association for Symbolic Logic.Johann A. Makowsky - 1997 - Bulletin of Symbolic Logic 3 (1):73-147.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Bernays-Schönfinkel-Ramsey class for set theory: semidecidability.Eugenio Omodeo & Alberto Policriti - 2010 - Journal of Symbolic Logic 75 (2):459-480.
    As is well-known, the Bernays-Schönfinkel-Ramsey class of all prenex ∃*∀* -sentences which are valid in classical first-order logic is decidable. This paper paves the way to an analogous result which the authors deem to hold when the only available predicate symbols are ∈ and =, no constants or function symbols are present, and one moves inside a (rather generic) Set Theory whose axioms yield the well-foundedness of membership and the existence of infinite sets. Here semi-decidability of the satisfiability problem for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The Decidability of the $ \forall^*\exists$ Class and the Axiom of Foundation.Dorella Bellè & Franco Parlamento - 2001 - Notre Dame Journal of Formal Logic 42 (1):41-53.
    We show that the Axiom of Foundation, as well as the Antifoundation Axiom AFA, plays a crucial role in determining the decidability of the following problem. Given a first-order theory T over the language $ =,\in$, and a sentence F of the form $ \forall x_1, \ldots, x_n \exists y F^M$ with $ F^M$ quantifier-free in the same language, are there models of T in which F is true? Furthermore we show that the Extensionality Axiom is quite irrelevant in that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Truth in V for Ǝ ∀∀-Sentences Is Decidable.D. Bellé & F. Parlamento - 2006 - Journal of Symbolic Logic 71 (4):1200 - 1222.
    Let V be the cumulative set theoretic hierarchy, generated from the empty set by taking powers at successor stages and unions at limit stages and, following [2], let the primitive language of set theory be the first order language which contains binary symbols for equality and membership only. Despite the existence of ∀∀-formulae in the primitive language, with two free variables, which are satisfiable in V but not by finite sets ([5]), and therefore of ƎƎ∀∀ sentences of the same language, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation