Switch to: References

Add citations

You must login to add citations.
  1. Order algebraizable logics.James G. Raftery - 2013 - Annals of Pure and Applied Logic 164 (3):251-283.
    This paper develops an order-theoretic generalization of Blok and Pigozziʼs notion of an algebraizable logic. Unavoidably, the ordered model class of a logic, when it exists, is not unique. For uniqueness, the definition must be relativized, either syntactically or semantically. In sentential systems, for instance, the order algebraization process may be required to respect a given but arbitrary polarity on the signature. With every deductive filter of an algebra of the pertinent type, the polarity associates a reflexive and transitive relation (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Introduction.Josep Maria Font & Ramon Jansana - 2013 - Studia Logica 101 (4):647-650.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Beth Property in Algebraic Logic.W. J. Blok & Eva Hoogland - 2006 - Studia Logica 83 (1-3):49-90.
    The present paper is a study in abstract algebraic logic. We investigate the correspondence between the metalogical Beth property and the algebraic property of surjectivity of epimorphisms. It will be shown that this correspondence holds for the large class of equivalential logics. We apply our characterization theorem to relevance logics and many-valued logics.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Contextual Deduction Theorems.J. G. Raftery - 2011 - Studia Logica 99 (1-3):279-319.
    Logics that do not have a deduction-detachment theorem (briefly, a DDT) may still possess a contextual DDT —a syntactic notion introduced here for arbitrary deductive systems, along with a local variant. Substructural logics without sentential constants are natural witnesses to these phenomena. In the presence of a contextual DDT, we can still upgrade many weak completeness results to strong ones, e.g., the finite model property implies the strong finite model property. It turns out that a finitary system has a contextual (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Relation Formulas for Protoalgebraic Equality Free Quasivarieties; Pałasińska’s Theorem Revisited.Anvar M. Nurakunov & Michał M. Stronkowski - 2013 - Studia Logica 101 (4):827-847.
    We provide a new proof of the following Pałasińska's theorem: Every finitely generated protoalgebraic relation distributive equality free quasivariety is finitely axiomatizable. The main tool we use are ${\mathcal{Q}}$ Q -relation formulas for a protoalgebraic equality free quasivariety ${\mathcal{Q}}$ Q . They are the counterparts of the congruence formulas used for describing the generation of congruences in algebras. Having this tool in hand, we prove a finite axiomatization theorem for ${\mathcal{Q}}$ Q when it has definable principal ${\mathcal{Q}}$ Q -subrelations. This (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quasivarieties with Definable Relative Principal Subcongruences.Anvar M. Nurakunov & M. M. Stronkowski - 2009 - Studia Logica 92 (1):109-120.
    For quasivarieties of algebras, we consider the property of having definable relative principal subcongruences, a generalization of the concepts of definable relative principal congruences and definable principal subcongruences. We prove that a quasivariety of algebras with definable relative principal subcongruences has a finite quasiequational basis if and only if the class of its relative (finitely) subdirectly irreducible algebras is strictly elementary. Since a finitely generated relatively congruence-distributive quasivariety has definable relative principal subcongruences, we get a new proof of the result (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations