Switch to: References

Add citations

You must login to add citations.
  1. Quantifier elimination for elementary geometry and elementary affine geometry.Rafael Grimson, Bart Kuijpers & Walied Othman - 2012 - Mathematical Logic Quarterly 58 (6):399-416.
    We introduce new first-order languages for the elementary n-dimensional geometry and elementary n-dimensional affine geometry , based on extending equation image and equation image, respectively, with new function symbols. Here, β stands for the betweenness relation and ≡ for the congruence relation. We show that the associated theories admit effective quantifier elimination.
    Download  
     
    Export citation  
     
    Bookmark  
  • Logic for physical space: From antiquity to present days.Marco Aiello, Guram Bezhanishvili, Isabelle Bloch & Valentin Goranko - 2012 - Synthese 186 (3):619-632.
    Since the early days of physics, space has called for means to represent, experiment, and reason about it. Apart from physicists, the concept of space has intrigued also philosophers, mathematicians and, more recently, computer scientists. This longstanding interest has left us with a plethora of mathematical tools developed to represent and work with space. Here we take a special look at this evolution by considering the perspective of Logic. From the initial axiomatic efforts of Euclid, we revisit the major milestones (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The simplest axiom system for plane hyperbolic geometry.Victor Pambuccian - 2004 - Studia Logica 77 (3):385 - 411.
    We provide a quantifier-free axiom system for plane hyperbolic geometry in a language containing only absolute geometrically meaningful ternary operations (in the sense that they have the same interpretation in Euclidean geometry as well). Each axiom contains at most 4 variables. It is known that there is no axiom system for plane hyperbolic consisting of only prenex 3-variable axioms. Changing one of the axioms, one obtains an axiom system for plane Euclidean geometry, expressed in the same language, all of whose (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations