Switch to: References

Add citations

You must login to add citations.
  1. Die Bedeutung der Methoden der Analyse und Synthese für Newtons Programm der Mathematisierung der Natur.Karl-Norbert Ihmig - 2004 - History of Philosophy & Logical Analysis 7 (1):91-119.
    Download  
     
    Export citation  
     
    Bookmark  
  • François Viète: between analysis and cryptanalysis.Marco Panza - 2006 - Studies in History and Philosophy of Science Part A 37 (2):269-289.
    François Viète is considered the father both of modern algebra and of modern cryptanalysis. The paper outlines Viète’s major contributions in these two mathematical fields and argues that, despite an obvious parallel between them, there is an essential difference. Viète’s ‘new algebra’ relies on his reform of the classical method of analysis and synthesis, in particular on a new conception of analysis and the introduction of a new formalism. The procedures he suggests to decrypt coded messages are particular forms of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The twofold role of diagrams in Euclid’s plane geometry.Marco Panza - 2012 - Synthese 186 (1):55-102.
    Proposition I.1 is, by far, the most popular example used to justify the thesis that many of Euclid’s geometric arguments are diagram-based. Many scholars have recently articulated this thesis in different ways and argued for it. My purpose is to reformulate it in a quite general way, by describing what I take to be the twofold role that diagrams play in Euclid’s plane geometry (EPG). Euclid’s arguments are object-dependent. They are about geometric objects. Hence, they cannot be diagram-based unless diagrams (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Method of Analysis: A Paradigm of Mathematical Reasoning?Jaakko Hintikka - 2012 - History and Philosophy of Logic 33 (1):49 - 67.
    The ancient Greek method of analysis has a rational reconstruction in the form of the tableau method of logical proof. This reconstruction shows that the format of analysis was largely determined by the requirement that proofs could be formulated by reference to geometrical figures. In problematic analysis, it has to be assumed not only that the theorem to be proved is true, but also that it is known. This means using epistemic logic, where instantiations of variables are typically allowed only (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Pappus of Alexandria in the 20th century. Analytical method and mathematical practice.Gianluca Longa - 2014 - Dissertation, University of Milan
    Download  
     
    Export citation  
     
    Bookmark  
  • Towards Paraconsistent Inquiry.Can Baskent - 2016 - Australasian Journal of Logic 13 (2):21-40.
    In this paper, we discuss Hintikka’s theory of interrogative approach to inquiry with a focus on bracketing. First, we dispute the use of bracketing in the interrogative model of inquiry arguing that bracketing provides an indispensable component of an inquiry. Then, we suggest a formal system based on strategy logic and logic of paradox to describe the epistemic aspects of an inquiry, and obtain a naturally paraconsistent system. We then apply our framework to some cases to illustrate its use.
    Download  
     
    Export citation  
     
    Bookmark  
  • Das velocidades às fluxões.Marco Panza - 2010 - Scientiae Studia 8 (4):509-546.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical proofs.Marco Panza - 2003 - Synthese 134 (1-2):119 - 158.
    The aim I am pursuing here is to describe some general aspects of mathematical proofs. In my view, a mathematical proof is a warrant to assert a non-tautological statement which claims that certain objects (possibly a certain object) enjoy a certain property. Because it is proved, such a statement is a mathematical theorem. In my view, in order to understand the nature of a mathematical proof it is necessary to understand the nature of mathematical objects. If we understand them as (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations