Switch to: References

Add citations

You must login to add citations.
  1. On the Euler characteristic of definable groups.Mário J. Edmundo - 2011 - Mathematical Logic Quarterly 57 (1):44-46.
    We show that in an arbitrary o-minimal structure the following are equivalent: conjugates of a definable subgroup of a definably connected, definably compact definable group cover the group if the o-minimal Euler characteristic of the quotient is non zero; every infinite, definably connected, definably compact definable group has a non trivial torsion point.
    Download  
     
    Export citation  
     
    Bookmark  
  • Definable group extensions in semi‐bounded o‐minimal structures.Mário J. Edmundo & Pantelis E. Eleftheriou - 2009 - Mathematical Logic Quarterly 55 (6):598-604.
    In this note we show: Let R = 〈R, <, +, 0, …〉 be a semi-bounded o-minimal expansion of an ordered group, and G a group definable in R of linear dimension m . Then G is a definable extension of a bounded definable group B by 〈Rm, +〉.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Coverings by open cells.Mário J. Edmundo, Pantelis E. Eleftheriou & Luca Prelli - 2014 - Archive for Mathematical Logic 53 (3-4):307-325.
    We prove that in a semi-bounded o-minimal expansion of an ordered group every non-empty open definable set is a finite union of open cells.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Invariance results for definable extensions of groups.Mário J. Edmundo, Gareth O. Jones & Nicholas J. Peatfield - 2011 - Archive for Mathematical Logic 50 (1-2):19-31.
    We show that in an o-minimal expansion of an ordered group finite definable extensions of a definable group which is defined in a reduct are already defined in the reduct. A similar result is proved for finite topological extensions of definable groups defined in o-minimal expansions of the ordered set of real numbers.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Product cones in dense pairs.Pantelis E. Eleftheriou - 2022 - Mathematical Logic Quarterly 68 (3):279-287.
    Let be an o‐minimal expansion of an ordered group, and a dense set such that certain tameness conditions hold. We introduce the notion of a product cone in, and prove: if expands a real closed field, then admits a product cone decomposition. If is linear, then it does not. In particular, we settle a question from [10].
    Download  
     
    Export citation  
     
    Bookmark  
  • Definable groups in models of Presburger Arithmetic.Alf Onshuus & Mariana Vicaría - 2020 - Annals of Pure and Applied Logic 171 (6):102795.
    This paper is devoted to understand groups definable in Presburger Arithmetic. We prove the following theorems: Theorem 1. Every group definable in a model of Presburger Arithmetic is abelian-by-finite. Theorem 2. Every bounded abelian group definable in a model of (Z, +, <) Presburger Arithmetic is definably isomorphic to (Z, +)^n mod out by a lattice.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fundamental group in o-minimal structures with definable Skolem functions.Bruno Dinis, Mário J. Edmundo & Marcello Mamino - 2021 - Annals of Pure and Applied Logic 172 (8):102975.
    In this paper we work in an arbitrary o-minimal structure with definable Skolem functions and prove that definably connected, locally definable manifolds are uniformly definably path connected, have an admissible cover by definably simply connected, open definable subsets and, definable paths and definable homotopies on such locally definable manifolds can be lifted to locally definable covering maps. These properties allow us to obtain the main properties of the general o-minimal fundamental group, including: invariance and comparison results; existence of universal locally (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-standard lattices and o-minimal groups.Pantelis E. Eleftheriou - 2013 - Bulletin of Symbolic Logic 19 (1):56-76.
    We describe a recent program from the study of definable groups in certain o-minimal structures. A central notion of this program is that of a lattice. We propose a definition of a lattice in an arbitrary first-order structure. We then use it to describe, uniformly, various structure theorems for o-minimal groups, each time recovering a lattice that captures some significant invariant of the group at hand. The analysis first goes through a local level, where a pertinent notion of pregeometry and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A semi-linear group which is not affine.Pantelis E. Eleftheriou - 2008 - Annals of Pure and Applied Logic 156 (2):287-289.
    In this short note we provide an example of a semi-linear group G which does not admit a semi-linear affine embedding; in other words, there is no semi-linear isomorphism between topological groups f:G→G′Mm, such that the group topology on G′ coincides with the subspace topology induced by Mm.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Compact domination for groups definable in linear o-minimal structures.Pantelis E. Eleftheriou - 2009 - Archive for Mathematical Logic 48 (7):607-623.
    We prove the Compact Domination Conjecture for groups definable in linear o-minimal structures. Namely, we show that every definably compact group G definable in a saturated linear o-minimal expansion of an ordered group is compactly dominated by (G/G 00, m, π), where m is the Haar measure on G/G 00 and π : G → G/G 00 is the canonical group homomorphism.
    Download  
     
    Export citation  
     
    Bookmark   3 citations