Switch to: References

Add citations

You must login to add citations.
  1. In defence of existence questions.Chris Daly & David Liggins - 2014 - Monist 97 (7):460–478.
    Do numbers exist? Do properties? Do possible worlds? Do fictional characters? Many metaphysicians spend time and effort trying to answer these and other questions about the existence of various entities. These inquiries have recently encountered opposition: a group of philosophers, drawing inspiration from Aristotle, have argued that many or all of the existence questions debated by metaphysicians can be answered trivially, and so are not worth debating. Our task is to defend existence questions from the neo-Aristotelians' attacks.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Naturalising Mathematics: A Critical Look at the Quine-Maddy Debate.Marianna Antonutti Marfori - 2012 - Disputatio 4 (32):323-342.
    This paper considers Maddy’s strategy for naturalising mathematics in the context of Quine’s scientific naturalism. The aim of this proposal is to account for the acceptability of mathematics on scientific grounds without committing to revisionism about mathematical practice entailed by the Quine-Putnam indispensability argument. It has been argued that Maddy’s mathematical naturalism makes inconsistent assumptions on the role of mathematics in scientific explanations to the effect that it cannot distinguish mathematics from pseudo-science. I shall clarify Maddy’s arguments and show that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Naturalism in the Philosophy of Mathematics.Alexander Paseau - 2012 - In Ed Zalta (ed.), Stanford Encyclopedia of Philosophy. Stanford Encyclopedia of Philosophy.
    Contemporary philosophy’s three main naturalisms are methodological, ontological and epistemological. Methodological naturalism states that the only authoritative standards are those of science. Ontological and epistemological naturalism respectively state that all entities and all valid methods of inquiry are in some sense natural. In philosophy of mathematics of the past few decades methodological naturalism has received the lion’s share of the attention, so we concentrate on this. Ontological and epistemological naturalism in the philosophy of mathematics are discussed more briefly in section (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Deferentialism.Chris Daly & David Liggins - 2011 - Philosophical Studies 156 (3):321-337.
    There is a recent and growing trend in philosophy that involves deferring to the claims of certain disciplines outside of philosophy, such as mathematics, the natural sciences, and linguistics. According to this trend— deferentialism , as we will call it—certain disciplines outside of philosophy make claims that have a decisive bearing on philosophical disputes, where those claims are more epistemically justified than any philosophical considerations just because those claims are made by those disciplines. Deferentialists believe that certain longstanding philosophical problems (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • On Naturalizing the Epistemology of Mathematics.Jeffrey W. Roland - 2009 - Pacific Philosophical Quarterly 90 (1):63-97.
    In this paper, I consider an argument for the claim that any satisfactory epistemology of mathematics will violate core tenets of naturalism, i.e. that mathematics cannot be naturalized. I find little reason for optimism that the argument can be effectively answered.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Abstract Objects.David Liggins - 2024 - Cambridge: Cambridge University Press.
    Philosophers often debate the existence of such things as numbers and propositions, and say that if these objects exist, they are abstract. But what does it mean to call something 'abstract'? And do we have good reason to believe in the existence of abstract objects? This Element addresses those questions, putting newcomers to these debates in a position to understand what they concern and what are the most influential considerations at work in this area of metaphysics. It also provides advice (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Deductivism in the Philosophy of Mathematics.Alexander Paseau & Fabian Pregel - 2023 - Stanford Encyclopedia of Philosophy 2023.
    Deductivism says that a mathematical sentence s should be understood as expressing the claim that s deductively follows from appropriate axioms. For instance, deductivists might construe “2+2=4” as “the sentence ‘2+2=4’ deductively follows from the axioms of arithmetic”. Deductivism promises a number of benefits. It captures the fairly common idea that mathematics is about “what can be deduced from the axioms”; it avoids an ontology of abstract mathematical objects; and it maintains that our access to mathematical truths requires nothing beyond (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quine on naturalism, nominalism, and philosophy’s place within science.James Andrew Smith - 2021 - Synthese 198 (2):1549-1567.
    W.V. Quine is a well-known proponent of naturalism, the view on which reality is described only in science. He is also well-known for arguing that our current scientific theories commit us to the existence of abstract objects. It is tempting to believe that the naturalistic philosopher should think scientists outside of philosophy are in the best position to assess the merits of revising our current commitment to abstract objects. But Quine rejects this deferential view. On the reading of Quine’s philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Against Fundamentality‐Based Metaphysics.Martin A. Lipman - 2018 - Noûs 52 (3):587-610.
    Metaphysical views typically draw some distinction between reality and appearance, endorsing realism about some subject matters and antirealism about others. There are different conceptions of how best to construe antirealist theories. A simple view has it that we are antirealists about a subject matter when we believe that this subject matter fails to obtain. This paper discusses an alternative view, which I will call the fundamentality-based conception of antirealism. We are antirealists in this sense when we think that the relevant (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Maddy and Mathematics: Naturalism or Not.Jeffrey W. Roland - 2007 - British Journal for the Philosophy of Science 58 (3):423-450.
    Penelope Maddy advances a purportedly naturalistic account of mathematical methodology which might be taken to answer the question 'What justifies axioms of set theory?' I argue that her account fails both to adequately answer this question and to be naturalistic. Further, the way in which it fails to answer the question deprives it of an analog to one of the chief attractions of naturalism. Naturalism is attractive to naturalists and nonnaturalists alike because it explains the reliability of scientific practice. Maddy's (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • God and Abstract Objects: The Coherence of Theism: Aseity.William Lane Craig - 2017 - Cham: Springer.
    This book is an exploration and defense of the coherence of classical theism’s doctrine of divine aseity in the face of the challenge posed by Platonism with respect to abstract objects. A synoptic work in analytic philosophy of religion, the book engages discussions in philosophy of mathematics, philosophy of language, metaphysics, and metaontology. It addresses absolute creationism, non-Platonic realism, fictionalism, neutralism, and alternative logics and semantics, among other topics. The book offers a helpful taxonomy of the wide range of options (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Is strict finitism arbitrary?Nuno Maia - forthcoming - Philosophical Quarterly.
    Strict finitism posits a largest natural number. The view is usually thought to be objectionably arbitrary. After all, there seems to be no apparent reason as to why the natural numbers should ‘stop’ at a specific point and not a bit later on the natural line. Drawing on how arguments from arbitrariness are employed in mereology, I propose several ways of understanding this objection against strict finitism. No matter how it is understood, I argue that it is always found wanting.
    Download  
     
    Export citation  
     
    Bookmark  
  • Indispensability, causation and explanation.Sorin Bangu - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):219-232.
    When considering mathematical realism, some scientific realists reject it, and express sympathy for the opposite view, mathematical nominalism; moreover, many justify this option by invoking the causal inertness of mathematical objects. The main aim of this note is to show that the scientific realists’ endorsement of this causal mathematical nominalism is in tension with another position some of them also accept, the doctrine of methodological naturalism. By highlighting this conflict, I intend to tip the balance in favor of a rival (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • You Can’t Mean That: Yablo’s Figuralist Account of Mathematics.Sarah Hoffman - unknown
    Burgess and Rosen argue that Yablo’s figuralist account of mathematics fails because it says mathematical claims are really only metaphorical. They suggest Yablo’s view is implausible as an account of what mathematicians say and confused about literal language. I show their argument isn’t decisive, briefly exploring some questions in the philosophy of language it raises, and argue Yablo’s view may be amended to a kind of revolutionary fictionalism not refuted by Burgess and Rosen.
    Download  
     
    Export citation  
     
    Bookmark