Switch to: References

Citations of:

What’s the Point of Complete Rigour?

Mind 125 (497):177-207 (2016)

Add citations

You must login to add citations.
  1. What is Mathematical Rigor?John Burgess & Silvia De Toffoli - 2022 - Aphex 25:1-17.
    Rigorous proof is supposed to guarantee that the premises invoked imply the conclusion reached, and the problem of rigor may be described as that of bringing together the perspectives of formal logic and mathematical practice on how this is to be achieved. This problem has recently raised a lot of discussion among philosophers of mathematics. We survey some possible solutions and argue that failure to understand its terms properly has led to misunderstandings in the literature.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematicians writing for mathematicians.Line Edslev Andersen, Mikkel Willum Johansen & Henrik Kragh Sørensen - 2019 - Synthese 198 (Suppl 26):6233-6250.
    We present a case study of how mathematicians write for mathematicians. We have conducted interviews with two research mathematicians, the talented PhD student Adam and his experienced supervisor Thomas, about a research paper they wrote together. Over the course of 2 years, Adam and Thomas revised Adam’s very detailed first draft. At the beginning of this collaboration, Adam was very knowledgeable about the subject of the paper and had good presentational skills but, as a new PhD student, did not yet (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Open texture, rigor, and proof.Benjamin Zayton - 2022 - Synthese 200 (4):1-20.
    Open texture is a kind of semantic indeterminacy first systematically studied by Waismann. In this paper, extant definitions of open texture will be compared and contrasted, with a view towards the consequences of open-textured concepts in mathematics. It has been suggested that these would threaten the traditional virtues of proof, primarily the certainty bestowed by proof-possession, and this suggestion will be critically investigated using recent work on informal proof. It will be argued that informal proofs have virtues that mitigate the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Acceptable gaps in mathematical proofs.Line Edslev Andersen - 2020 - Synthese 197 (1):233-247.
    Mathematicians often intentionally leave gaps in their proofs. Based on interviews with mathematicians about their refereeing practices, this paper examines the character of intentional gaps in published proofs. We observe that mathematicians’ refereeing practices limit the number of certain intentional gaps in published proofs. The results provide some new perspectives on the traditional philosophical questions of the nature of proof and of what grounds mathematical knowledge.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Lakatos-style collaborative mathematics through dialectical, structured and abstract argumentation.Alison Pease, John Lawrence, Katarzyna Budzynska, Joseph Corneli & Chris Reed - 2017 - Artificial Intelligence 246 (C):181-219.
    Download  
     
    Export citation  
     
    Bookmark   9 citations