Switch to: References

Add citations

You must login to add citations.
  1. Abstract Forms of Quantification in the Quantified Argument Calculus.Edi Pavlović & Norbert Gratzl - 2023 - Review of Symbolic Logic 16 (2):449-479.
    The Quantified argument calculus (Quarc) has received a lot of attention recently as an interesting system of quantified logic which eschews the use of variables and unrestricted quantification, but nonetheless achieves results similar to the Predicate calculus (PC) by employing quantifiers applied directly to predicates instead. Despite this noted similarity, the issue of the relationship between Quarc and PC has so far not been definitively resolved. We address this question in the present paper, and then expand upon that result. Utilizing (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Decidable Fragments of the Quantified Argument Calculus.Edi Pavlović & Norbert Gratzl - 2024 - Review of Symbolic Logic 17 (3):736-761.
    This paper extends the investigations into logical properties of the quantified argument calculus (Quarc) by suggesting a series of proper subsystems which, although retaining the entire vocabulary of Quarc, restrict quantification in such a way as to make the result decidable. The proof of decidability is via a procedure that prunes the infinite branches of a derivation tree in what is a syntactic counterpart of semantic filtration. We demonstrate an application of one of these systems by showing that Aristotle’s assertoric (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Completeness Proof for a Regular Predicate Logic with Undefined Truth Value.Antti Valmari & Lauri Hella - 2023 - Notre Dame Journal of Formal Logic 64 (1):61-93.
    We provide a sound and complete proof system for an extension of Kleene’s ternary logic to predicates. The concept of theory is extended with, for each function symbol, a formula that specifies when the function is defined. The notion of “is defined” is extended to terms and formulas via a straightforward recursive algorithm. The “is defined” formulas are constructed so that they themselves are always defined. The completeness proof relies on the Henkin construction. For each formula, precisely one of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Neutral Free Logic: Motivation, Proof Theory and Models.Edi Pavlović & Norbert Gratzl - 2023 - Journal of Philosophical Logic 52 (2):519-554.
    Free logics are a family of first-order logics which came about as a result of examining the existence assumptions of classical logic (Hintikka _The Journal of Philosophy_, _56_, 125–137 1959 ; Lambert _Notre Dame Journal of Formal Logic_, _8_, 133–144 1967, 1997, 2001 ). What those assumptions are varies, but the central ones are that (i) the domain of interpretation is not empty, (ii) every name denotes exactly one object in the domain and (iii) the quantifiers have existential import. Free (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Free Logics are Cut-Free.Andrzej Indrzejczak - 2021 - Studia Logica 109 (4):859-886.
    The paper presents a uniform proof-theoretic treatment of several kinds of free logic, including the logics of existence and definedness applied in constructive mathematics and computer science, and called here quasi-free logics. All free and quasi-free logics considered are formalised in the framework of sequent calculus, the latter for the first time. It is shown that in all cases remarkable simplifications of the starting systems are possible due to the special rule dealing with identity and existence predicate. Cut elimination is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Free Definite Description Theory – Sequent Calculi and Cut Elimination.Andrzej Indrzejczak - forthcoming - Logic and Logical Philosophy:1.
    We provide an application of a sequent calculus framework to the formalization of definite descriptions. It is a continuation of research undertaken in [20, 22]. In the present paper a so-called free description theory is examined in the context of different kinds of free logic, including systems applied in computer science and constructive mathematics for dealing with partial functions. It is shown that the same theory in different logics may be formalised by means of different rules and gives results of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations