Switch to: References

Add citations

You must login to add citations.
  1. Hilbert’s Program.Richard Zach - 2012 - In Ed Zalta (ed.), Stanford Encyclopedia of Philosophy. Stanford, CA: Stanford Encyclopedia of Philosophy.
    In the early 1920s, the German mathematician David Hilbert (1862–1943) put forward a new proposal for the foundation of classical mathematics which has come to be known as Hilbert's Program. It calls for a formalization of all of mathematics in axiomatic form, together with a proof that this axiomatization of mathematics is consistent. The consistency proof itself was to be carried out using only what Hilbert called “finitary” methods. The special epistemological character of finitary reasoning then yields the required justification (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • L'idée de la logique formelle dans les appendices VI à X du volume 12 des Husserliana.Manuel Gustavo Isaac - 2015 - History and Philosophy of Logic 36 (4):321-345.
    Au terme des Prolégomènes, Husserl formule son idée de la logique pure en la structurant sur deux niveaux: l'un, supérieur, de la logique formelle fondé transcendantalement et d'un point de vue épistémologique par l'autre, inférieur, d'une morphologie des catégories. Seul le second de ces deux niveaux est traité dans les Recherches logiques, tandis que les travaux théoriques en logique formelle menés par Husserl à la même époque en paraissent plutôt indépendants. Cet article est consacré à ces travaux tels que recueillis (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Hilberts Logik. Von der Axiomatik zur Beweistheorie.Volker Peckhaus - 1995 - NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin 3 (1):65-86.
    This paper gives a survey of David Hilbert's (1862–1943) changing attitudes towards logic. The logical theory of the Göttingen mathematician is presented as intimately linked to his studies on the foundation of mathematics. Hilbert developed his logical theory in three stages: (1) in his early axiomatic programme until 1903 Hilbert proposed to use the traditional theory of logical inferences to prove the consistency of his set of axioms for arithmetic. (2) After the publication of the logical and set-theoretical paradoxes by (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Der Durchgang durch das Unmögliche . An Unpublished Manuscript from the Husserl-Archives.Carlo Ierna - 2011 - Husserl Studies 27 (3):217-226.
    The article introduces and discusses an unpublished manuscript by Edmund Husserl, conserved at the Husserl-Archives Leuven with signature K I 26, pp. 73a–73b. The article is followed by the text of the manuscript in German and in an English translation. The manuscript, titled “The Transition through the Impossible” ( Der Durchgang durch das Unmögliche ), was part of the material Husserl used for his 1901 Doppelvortrag in Göttingen. In the manuscript, the impossible is characterized as the “sphere of objectlessness” ( (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Die Berliner Gruppe und der Wiener Kreis: Gemeinsamkeiten und Unterschiede.Nikolay Milkov - 2008 - In Martina Fürst, Wolfgang Gombocz & Christian Hiebaum (eds.), Analysen, Argumente, Ansätze. Beiträge Zum 8. Internationalen Kongress der Österreichischen Gesellschaft für Philosophie in Graz. Ontos. pp. 55-63.
    Unsere These lautet, dass die Geschichte des logischen Empirismus bisher nicht in ihrer ganzen Komplexität dargestellt wurde. Es herrscht das Bild vor, dass vor allem der Wiener Kreis die wissenschaftliche Philosophie seiner Zeit dominiert habe. In Wirklichkeit waren Hans Reichenbach und die Philosophen und Wissenschaftler in seiner Gruppe mehr als nur geistige Verwandte der Wiener logischen Empiristen. Die Berliner Gruppe war ein gleichberechtigter Partner bei der Verbreitung wissenschaftlicher Philosophie im deutschsprachigen Raum um 1930 und schlug dabei durchaus einen individuellen Weg (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Zionist Internationalism through Number Theory: Edmund Landau at the Opening of the Hebrew University in 1925.Leo Corry & Norbert Schappacher - 2010 - Science in Context 23 (4):427-471.
    ArgumentThis article gives the background to a public lecture delivered in Hebrew by Edmund Landau at the opening ceremony of the Hebrew University in Jerusalem in 1925. On the surface, the lecture appears to be a slightly awkward attempt by a distinguished German-Jewish mathematician to popularize a few number-theoretical tidbits. However, quite unexpectedly, what emerges here is Landau's personal blend of Zionism, German nationalism, and the proud ethos of pure, rigorous mathematics – against the backdrop of the situation of Germany (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations