Switch to: References

Add citations

You must login to add citations.
  1. Modal Logics That Are Both Monotone and Antitone: Makinson’s Extension Results and Affinities between Logics.Lloyd Humberstone & Steven T. Kuhn - 2022 - Notre Dame Journal of Formal Logic 63 (4):515-550.
    A notable early result of David Makinson establishes that every monotone modal logic can be extended to LI, LV, or LF, and every antitone logic can be extended to LN, LV, or LF, where LI, LN, LV, and LF are logics axiomatized, respectively, by the schemas □α↔α, □α↔¬α, □α↔⊤, and □α↔⊥. We investigate logics that are both monotone and antitone (hereafter amphitone). There are exactly three: LV, LF, and the minimum amphitone logic AM axiomatized by the schema □α→□β. These logics, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Is Classical Mathematics Appropriate for Theory of Computation?Farzad Didehvar - manuscript
    Throughout this paper, we are trying to show how and why our Mathematical frame-work seems inappropriate to solve problems in Theory of Computation. More exactly, the concept of turning back in time in paradoxes causes inconsistency in modeling of the concept of Time in some semantic situations. As we see in the first chapter, by introducing a version of “Unexpected Hanging Paradox”,first we attempt to open a new explanation for some paradoxes. In the second step, by applying this paradox, it (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation