Switch to: References

Add citations

You must login to add citations.
  1. Functional Completeness in CPL via Correspondence Analysis.Dorota Leszczyńska-Jasion, Yaroslav Petrukhin, Vasilyi Shangin & Marcin Jukiewicz - 2019 - Bulletin of the Section of Logic 48 (1).
    Kooi and Tamminga's correspondence analysis is a technique for designing proof systems, mostly, natural deduction and sequent systems. In this paper it is used to generate sequent calculi with invertible rules, whose only branching rule is the rule of cut. The calculi pertain to classical propositional logic and any of its fragments that may be obtained from adding a set of rules characterizing a two-argument Boolean function to the negation fragment of classical propositional logic. The properties of soundness and completeness (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Generalisation of proof simulation procedures for Frege systems by M.L. Bonet and S.R. Buss.Daniil Kozhemiachenko - 2018 - Journal of Applied Non-Classical Logics 28 (4):389-413.
    ABSTRACTIn this paper, we present a generalisation of proof simulation procedures for Frege systems by Bonet and Buss to some logics for which the deduction theorem does not hold. In particular, we study the case of finite-valued Łukasiewicz logics. To this end, we provide proof systems and which augment Avron's Frege system HŁuk with nested and general versions of the disjunction elimination rule, respectively. For these systems, we provide upper bounds on speed-ups w.r.t. both the number of steps in proofs (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Generalized Correspondence Analysis for Three-Valued Logics.Yaroslav Petrukhin - 2018 - Logica Universalis 12 (3-4):423-460.
    Correspondence analysis is Kooi and Tamminga’s universal approach which generates in one go sound and complete natural deduction systems with independent inference rules for tabular extensions of many-valued functionally incomplete logics. Originally, this method was applied to Asenjo–Priest’s paraconsistent logic of paradox LP. As a result, one has natural deduction systems for all the logics obtainable from the basic three-valued connectives of LP -language) by the addition of unary and binary connectives. Tamminga has also applied this technique to the paracomplete (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On Vidal's trivalent explanations for defective conditional in mathematics.Yaroslav Petrukhin & Vasily Shangin - 2019 - Journal of Applied Non-Classical Logics 29 (1):64-77.
    ABSTRACTThe paper deals with a problem posed by Mathieu Vidal to provide a formal representation for defective conditional in mathematics Vidal, M. [. The defective conditional in mathematics. Journal of Applied Non-Classical Logics, 24, 169–179]. The key feature of defective conditional is that its truth-value is indeterminate if its antecedent is false. In particular, we are interested in two explanations given by Vidal with the use of trivalent logics. By analysing a simple argument from plane geometry, where defective conditional is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation