Switch to: References

Add citations

You must login to add citations.
  1. Interpretable groups are definable.Pantelis E. Eleftheriou, Ya'acov Peterzil & Janak Ramakrishnan - 2014 - Journal of Mathematical Logic 14 (1):1450002.
    We prove that in an arbitrary o-minimal structure, every interpretable group is definably isomorphic to a definable one. We also prove that every definable group lives in a cartesian product of one-dimensional definable group-intervals. We discuss the general open question of elimination of imaginaries in an o-minimal structure.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Expansions of real closed fields that introduce no new smooth functions.Pantelis E. Eleftheriou & Alex Savatovsky - 2020 - Annals of Pure and Applied Logic 171 (7):102808.
    Download  
     
    Export citation  
     
    Bookmark  
  • Coverings by open cells.Mário J. Edmundo, Pantelis E. Eleftheriou & Luca Prelli - 2014 - Archive for Mathematical Logic 53 (3-4):307-325.
    We prove that in a semi-bounded o-minimal expansion of an ordered group every non-empty open definable set is a finite union of open cells.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Maximal compact subgroups in the o-minimal setting.Annalisa Conversano - 2013 - Journal of Mathematical Logic 13 (1):1350004.
    A characterization of groups definable in o-minimal structures having maximal definable definably compact subgroups is given. This follows from a definable decomposition in analogy with Lie groups, where the role of maximal tori is played by maximal 0-subgroups. Along the way we give structural theorems for solvable groups, linear groups, and extensions of definably compact by torsion-free definable groups.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Non-standard lattices and o-minimal groups.Pantelis E. Eleftheriou - 2013 - Bulletin of Symbolic Logic 19 (1):56-76.
    We describe a recent program from the study of definable groups in certain o-minimal structures. A central notion of this program is that of a lattice. We propose a definition of a lattice in an arbitrary first-order structure. We then use it to describe, uniformly, various structure theorems for o-minimal groups, each time recovering a lattice that captures some significant invariant of the group at hand. The analysis first goes through a local level, where a pertinent notion of pregeometry and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Compact domination for groups definable in linear o-minimal structures.Pantelis E. Eleftheriou - 2009 - Archive for Mathematical Logic 48 (7):607-623.
    We prove the Compact Domination Conjecture for groups definable in linear o-minimal structures. Namely, we show that every definably compact group G definable in a saturated linear o-minimal expansion of an ordered group is compactly dominated by (G/G 00, m, π), where m is the Haar measure on G/G 00 and π : G → G/G 00 is the canonical group homomorphism.
    Download  
     
    Export citation  
     
    Bookmark   3 citations