Switch to: References

Add citations

You must login to add citations.
  1. Van Lambalgen's Theorem and High Degrees.Johanna N. Y. Franklin & Frank Stephan - 2011 - Notre Dame Journal of Formal Logic 52 (2):173-185.
    We show that van Lambalgen's Theorem fails with respect to recursive randomness and Schnorr randomness for some real in every high degree and provide a full characterization of the Turing degrees for which van Lambalgen's Theorem can fail with respect to Kurtz randomness. However, we also show that there is a recursively random real that is not Martin-Löf random for which van Lambalgen's Theorem holds with respect to recursive randomness.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Superhighness.Bjørn Kjos-Hanssen & Andrée Nies - 2009 - Notre Dame Journal of Formal Logic 50 (4):445-452.
    We prove that superhigh sets can be jump traceable, answering a question of Cole and Simpson. On the other hand, we show that such sets cannot be weakly 2-random. We also study the class $superhigh^\diamond$ and show that it contains some, but not all, of the noncomputable K-trivial sets.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mass problems and measure-theoretic regularity.Stephen G. Simpson - 2009 - Bulletin of Symbolic Logic 15 (4):385-409.
    A well known fact is that every Lebesgue measurable set is regular, i.e., it includes an F$_{\sigma}$ set of the same measure. We analyze this fact from a metamathematical or foundational standpoint. We study a family of Muchnik degrees corresponding to measure-theoretic regularity at all levels of the effective Borel hierarchy. We prove some new results concerning Nies's notion of LR-reducibility. We build some $\omega$-models of RCA$_0$which are relevant for the reverse mathematics of measure-theoretic regularity.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Tracing and domination in the Turing degrees.George Barmpalias - 2012 - Annals of Pure and Applied Logic 163 (5):500-505.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Algorithmic randomness, reverse mathematics, and the dominated convergence theorem.Jeremy Avigad, Edward T. Dean & Jason Rute - 2012 - Annals of Pure and Applied Logic 163 (12):1854-1864.
    We analyze the pointwise convergence of a sequence of computable elements of L1 in terms of algorithmic randomness. We consider two ways of expressing the dominated convergence theorem and show that, over the base theory RCA0, each is equivalent to the assertion that every Gδ subset of Cantor space with positive measure has an element. This last statement is, in turn, equivalent to weak weak Königʼs lemma relativized to the Turing jump of any set. It is also equivalent to the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Mass problems and almost everywhere domination.Stephen G. Simpson - 2007 - Mathematical Logic Quarterly 53 (4):483-492.
    We examine the concept of almost everywhere domination from the viewpoint of mass problems. Let AED and MLR be the sets of reals which are almost everywhere dominating and Martin-Löf random, respectively. Let b1, b2, and b3 be the degrees of unsolvability of the mass problems associated with AED, MLR × AED, and MLR ∩ AED, respectively. Let [MATHEMATICAL SCRIPT CAPITAL P]w be the lattice of degrees of unsolvability of mass problems associated with nonempty Π01 subsets of 2ω. Let 1 (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Almost everywhere domination and superhighness.Stephen G. Simpson - 2007 - Mathematical Logic Quarterly 53 (4):462-482.
    Let ω be the set of natural numbers. For functions f, g: ω → ω, we say f is dominated by g if f < g for all but finitely many n ∈ ω. We consider the standard “fair coin” probability measure on the space 2ω of in-finite sequences of 0's and 1's. A Turing oracle B is said to be almost everywhere dominating if, for measure 1 many X ∈ 2ω, each function which is Turing computable from X is (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • On very high degrees.Keng Meng Ng - 2008 - Journal of Symbolic Logic 73 (1):309-342.
    In this paper we show that there is a pair of superhigh r.e. degree that forms a minimal pair. An analysis of the proof shows that a critical ingredient is the growth rates of certain order functions. This leads us to investigate certain high r.e. degrees, which resemble ∅′ very closely in terms of ∅′-jump traceability. In particular, we will construct an ultrahigh degree which is cappable.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Annals of Pure and Applied Logic. [REVIEW]Itay Neeman - 2003 - Bulletin of Symbolic Logic 9 (3):414-416.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mass problems and hyperarithmeticity.Joshua A. Cole & Stephen G. Simpson - 2007 - Journal of Mathematical Logic 7 (2):125-143.
    A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if for all Y ∈ Q there exists X ∈ P such that X is Turing reducible to Y. A weak degree is an equivalence class of mass problems under mutual weak reducibility. Let [Formula: see text] be the lattice of weak degrees of mass problems associated with nonempty [Formula: see text] subsets of the Cantor (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Finding paths through narrow and wide trees.Stephen Binns & Bjørn Kjos-Hanssen - 2009 - Journal of Symbolic Logic 74 (1):349-360.
    We consider two axioms of second-order arithmetic. These axioms assert, in two different ways, that infinite but narrow binary trees always have infinite paths. We show that both axioms are strictly weaker than Weak König's Lemma, and incomparable in strength to the dual statement (WWKL) that wide binary trees have paths.
    Download  
     
    Export citation  
     
    Bookmark   2 citations