Switch to: References

Add citations

You must login to add citations.
  1. Elementary epimorphisms between models of set theory.Robert S. Lubarsky & Norman Lewis Perlmutter - 2016 - Archive for Mathematical Logic 55 (5-6):759-766.
    We show that every Π1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPi _1$$\end{document}-elementary epimorphism between models of ZF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{ZF}$$\end{document} is an isomorphism and hence, trivial. On the other hand, nonisomorphic Σ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma _1$$\end{document}-elementary epimorphisms between models of ZF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{ZF}$$\end{document} can be constructed, as can fully elementary epimorphisms between models of ZFC-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Varieties of misrepresentation and homomorphism.Francesca Pero & Mauricio Suárez - 2016 - European Journal for Philosophy of Science 6 (1):71-90.
    This paper is a critical response to Andreas Bartels’ sophisticated defense of a structural account of scientific representation. We show that, contrary to Bartels’ claim, homomorphism fails to account for the phenomenon of misrepresentation. Bartels claims that homomorphism is adequate in two respects. First, it is conceptually adequate, in the sense that it shows how representation differs from misrepresentation and non-representation. Second, if properly weakened, homomorphism is formally adequate to accommodate misrepresentation. We question both claims. First, we show that homomorphism (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations