Switch to: References

Add citations

You must login to add citations.
  1. KF, PKF and Reinhardt’s Program.Luca Castaldo & Johannes Stern - 2022 - Review of Symbolic Logic (1):33-58.
    In “Some Remarks on Extending and Interpreting Theories with a Partial Truth Predicate”, Reinhardt [21] famously proposed an instrumentalist interpretation of the truth theory Kripke–Feferman ( $\mathrm {KF}$ ) in analogy to Hilbert’s program. Reinhardt suggested to view $\mathrm {KF}$ as a tool for generating “the significant part of $\mathrm {KF}$ ”, that is, as a tool for deriving sentences of the form $\mathrm{Tr}\ulcorner {\varphi }\urcorner $. The constitutive question of Reinhardt’s program was whether it was possible “to justify the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Notes on Models of (Partial) Kripke–Feferman Truth.Luca Castaldo - 2023 - Studia Logica 111 (1):83-111.
    This article investigates models of axiomatizations related to the semantic conception of truth presented by Kripke (J Philos 72(19):690–716, 1975), the so-called _fixed-point semantics_. Among the various proof systems devised as a proof-theoretic characterization of the fixed-point semantics, in recent years two alternatives have received particular attention: _classical systems_ (i.e., systems based on classical logic) and _nonclassical systems_ (i.e., systems based on some nonclassical logic). The present article, building on Halbach and Nicolai (J Philos Log 47(2):227–257, 2018), shows that there (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Responses.David Ripley - 2021 - Análisis Filosófico 41 (2):351-373.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Costs of Classical Logic.Luca Castaldo - 2021 - Erkenntnis 88 (3):1157-1188.
    This article compares classical (or -like) and nonclassical (or -like) axiomatisations of the fixed-point semantics developed by Kripke (J Philos 72(19): 690–716, 1975). Following the line of investigation of Halbach and Nicolai (J Philos Logic 47(2): 227–257, 2018), we do not compare and qua theories of truth simpliciter, but rather qua axiomatisations of the Kripkean conception of truth. We strengthen the central results of Halbach and Nicolai (2018) and Nicolai (Stud Log 106(1): 101–130, 2018), showing that, on the one hand, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Paraconsistent logic and query answering in inconsistent databases.C. A. Middelburg - 2024 - Journal of Applied Non-Classical Logics 34 (1):133-154.
    This paper concerns the paraconsistent logic LPQ⊃,F and an application of it in the area of relational database theory. The notions of a relational database, a query applicable to a relational database, and a consistent answer to a query with respect to a possibly inconsistent relational database are considered from the perspective of this logic. This perspective enables among other things the definition of a consistent answer to a query with respect to a possibly inconsistent database without resort to database (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The power of naive truth.Hartry Field - 2022 - Review of Symbolic Logic 15 (1):225-258.
    Nonclassical theories of truth that take truth to be transparent have some obvious advantages over any classical theory of truth. But several authors have recently argued that there’s also a big disadvantage of nonclassical theories as compared to their “external” classical counterparts: proof-theoretic strength. While conceding the relevance of this, the paper argues that there is a natural way to beef up extant internal theories so as to remove their proof-theoretic disadvantage. It is suggested that the resulting internal theories are (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Una teoría no transitiva de la verdad sobre PA.Jonathan Dittrich - 2021 - Análisis Filosófico 41 (2):273-283.
    David Ripley ha argumentado extensamente a favor de una teoría no-transitiva de la verdad que abandona la regla de Corte para así evitar las pruebas de trivialidad causadas por paradojas como la del mentiroso. Sin embargo, es problemático comparar su teoría con varias teorías clásicas que se han ofrecido en la bibliografía. La tarea de formular esta teoría sobre la aritmética de Peano no es trivial, ya que Corte no es eliminable en la aritmética de Peano. En este artículo intento (...)
    Download  
     
    Export citation  
     
    Bookmark