Switch to: References

Add citations

You must login to add citations.
  1. Stable Definability and Generic Relations.Byunghan Kim & Rahim Moosa - 2007 - Journal of Symbolic Logic 72 (4):1163 - 1176.
    An amalgamation base p in a simple theory is stably definable if its canonical base is interdefinable with the set of canonical parameters for the ϕ-definitions of p as ϕ ranges through all stable formulae. A necessary condition for stably definability is given and used to produce an example of a supersimple theory with stable forking having types that are not stably definable. This answers negatively a question posed in [8]. A criterion for and example of a stably definable amalgamation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • ℵ0-categorical structures with a predimension.David M. Evans - 2002 - Annals of Pure and Applied Logic 116 (1-3):157-186.
    We give an axiomatic framework for the non-modular simple 0-categorical structures constructed by Hrushovski. This allows us to verify some of their properties in a uniform way, and to show that these properties are preserved by iterations of the construction.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Comparing axiomatizations of free pseudospaces.Olaf Beyersdorff - 2009 - Archive for Mathematical Logic 48 (7):625-641.
    Independently and pursuing different aims, Hrushovski and Srour (On stable non-equational theories. Unpublished manuscript, 1989) and Baudisch and Pillay (J Symb Log 65(1):443–460, 2000) have introduced two free pseudospaces that generalize the well know concept of Lachlan’s free pseudoplane. In this paper we investigate the relationship between these free pseudospaces, proving in particular, that the pseudospace of Baudisch and Pillay is a reduct of the pseudospace of Hrushovski and Srour.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mekler's construction preserves CM-triviality.Andreas Baudisch - 2002 - Annals of Pure and Applied Logic 115 (1-3):115-173.
    For every structure M of finite signature Mekler 781) has constructed a group G such that for every κ the maximal number of n -types over an elementary equivalent model of cardinality κ is the same for M and G . These groups are nilpotent of class 2 and of exponent p , where p is a fixed prime greater than 2. We consider stable structures M only and show that M is CM -trivial if and only if G is (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Ample dividing.David M. Evans - 2003 - Journal of Symbolic Logic 68 (4):1385-1402.
    We construct a stable one-based, trivial theory with a reduct which is not trivial. This answers a question of John B. Goode. Using this, we construct a stable theory which is n-ample for all natural numbers n, and does not interpret an infinite group.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Ample thoughts.Daniel Palacín & Frank O. Wagner - 2013 - Journal of Symbolic Logic 78 (2):489-510.
    Non-$n$-ampleness as defined by Pillay [20] and Evans [5] is preserved under analysability. Generalizing this to a more general notion of $\Sigma$-ampleness, this gives an immediate proof for all simple theories of a weakened version of the Canonical Base Property (CBP) proven by Chatzidakis [4] for types of finite SU-rank. This is then applied to the special case of groups.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • CM-triviality and relational structures.Viktor Verbovskiy & Ikuo Yoneda - 2003 - Annals of Pure and Applied Logic 122 (1-3):175-194.
    Continuing work of Baldwin and Shi 1), we study non-ω-saturated generic structures of the ab initio Hrushovski construction with amalgamation over closed sets. We show that they are CM-trivial with weak elimination of imaginaries. Our main tool is a new characterization of non-forking in these theories.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Supersimple structures with a dense independent subset.Alexander Berenstein, Juan Felipe Carmona & Evgueni Vassiliev - 2017 - Mathematical Logic Quarterly 63 (6):552-573.
    Based on the work done in [][] in the o‐minimal and geometric settings, we study expansions of models of a supersimple theory with a new predicate distiguishing a set of forking‐independent elements that is dense inside a partial type, which we call H‐structures. We show that any two such expansions have the same theory and that under some technical conditions, the saturated models of this common theory are again H‐structures. We prove that under these assumptions the expansion is supersimple and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Forking geometry on theories with an independent predicate.Juan Felipe Carmona - 2015 - Archive for Mathematical Logic 54 (1-2):247-255.
    We prove that a simple theory of SU-rank 1 is n-ample if and only if the associated theory equipped with a predicate for an independent dense subset is n-ample for n at least 2.
    Download  
     
    Export citation  
     
    Bookmark   1 citation