Switch to: References

Add citations

You must login to add citations.
  1. A note on μ-stabilizers in ACVF.Jinhe Ye - 2023 - Annals of Pure and Applied Logic 174 (3):103210.
    Download  
     
    Export citation  
     
    Bookmark  
  • Definable types in algebraically closed valued fields.Pablo Cubides Kovacsics & Françoise Delon - 2016 - Mathematical Logic Quarterly 62 (1-2):35-45.
    In, Marker and Steinhorn characterized models of an o‐minimal theory such that all types over M realized in N are definable. In this article we characterize pairs of algebraically closed valued fields satisfying the same property. In o‐minimal theories, a pair of models for which all 1‐types over M realized in N are definable has already the desired property. Although it is true that if M is an algebraically closed valued field such that all 1‐types over M are definable then (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Definability of types and VC density in differential topological fields.Françoise Point - 2018 - Archive for Mathematical Logic 57 (7-8):809-828.
    Given a model-complete theory of topological fields, we considered its generic differential expansions and under a certain hypothesis of largeness, we axiomatised the class of existentially closed ones. Here we show that a density result for definable types over definably closed subsets in such differential topological fields. Then we show two transfer results, one on the VC-density and the other one, on the combinatorial property NTP2.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Generic pairs of SU-rank 1 structures.Evgueni Vassiliev - 2003 - Annals of Pure and Applied Logic 120 (1-3):103-149.
    For a supersimple SU-rank 1 theory T we introduce the notion of a generic elementary pair of models of T . We show that the theory T* of all generic T-pairs is complete and supersimple. In the strongly minimal case, T* coincides with the theory of infinite dimensional pairs, which was used in 1184–1194) to study the geometric properties of T. In our SU-rank 1 setting, we use T* for the same purpose. In particular, we obtain a characterization of linearity (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations