Switch to: References

Citations of:

How to avoid inconsistent idealizations

Synthese 191 (13):2957-2972 (2014)

Add citations

You must login to add citations.
  1. Idealized and perspectival representations: some reasons for making a distinction.Alexander Rueger - 2014 - Synthese 191 (8):1831-1845.
    I argue that an adequate understanding of the practice of constructing models in physics requires a distinction between two strategies that are commonly both labeled ‘idealization’. The formal characteristic of both methods is to let a parameter in the equations for a target system go to zero. But the discussion of examples from various applications of perturbation theory shows that there is in general a difference with respect to the aims such limiting procedures are supposed to serve; and with different (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The paradox of phase transitions in the light of constructive mathematics.Pauline van Wierst - 2019 - Synthese 196 (5):1863-1884.
    The paradox of phase transitions raises the problem of how to reconcile the fact that we see phase transitions happen in concrete, finite systems around us, with the fact that our best theories—i.e. statistical-mechanical theories of phase transitions—tell us that phase transitions occur only in infinite systems. In this paper we aim to clarify to which extent this paradox is relative to the mathematical framework which is used in these theories, i.e. classical mathematics. To this aim, we will explore the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Batterman's 'On the Explanatory Role of Mathematics in Empirical Science'.Christopher Pincock - 2011 - British Journal for the Philosophy of Science 62 (1):211 - 217.
    This discussion note of (Batterman [2010]) clarifies the modest aims of my 'mapping account' of applications of mathematics in science. Once these aims are clarified it becomes clear that Batterman's 'completely new approach' (Batterman [2010], p. 24) is not needed to make sense of his cases of idealized mathematical explanations. Instead, a positive proposal for the explanatory power of such cases can be reconciled with the mapping account.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Concrete Scale Models, Essential Idealization, and Causal Explanation.Christopher Pincock - 2022 - British Journal for the Philosophy of Science 73 (2):299-323.
    This paper defends three claims about concrete or physical models: these models remain important in science and engineering, they are often essentially idealized, in a sense to be made precise, and despite these essential idealizations, some of these models may be reliably used for the purpose of causal explanation. This discussion of concrete models is pursued using a detailed case study of some recent models of landslide generated impulse waves. Practitioners show a clear awareness of the idealized character of these (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Unrealistic models for realistic computations: how idealisations help represent mathematical structures and found scientific computing.Philippos Papayannopoulos - 2020 - Synthese 199 (1-2):249-283.
    We examine two very different approaches to formalising real computation, commonly referred to as “Computable Analysis” and “the BSS approach”. The main models of computation underlying these approaches—bit computation and BSS, respectively—have also been put forward as appropriate foundations for scientific computing. The two frameworks offer useful computability and complexity results about problems whose underlying domain is an uncountable space. Since typically the problems dealt with in physical sciences, applied mathematics, economics, and engineering are also defined in uncountable domains, it (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Scientific understanding and felicitous legitimate falsehoods.Insa Lawler - 2021 - Synthese 198 (7):6859-6887.
    Science is replete with falsehoods that epistemically facilitate understanding by virtue of being the very falsehoods they are. In view of this puzzling fact, some have relaxed the truth requirement on understanding. I offer a factive view of understanding that fully accommodates the puzzling fact in four steps: (i) I argue that the question how these falsehoods are related to the phenomenon to be understood and the question how they figure into the content of understanding it are independent. (ii) I (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Model Explanation Versus Model-Induced Explanation.Insa Lawler & Emily Sullivan - 2021 - Foundations of Science 26 (4):1049-1074.
    Scientists appeal to models when explaining phenomena. Such explanations are often dubbed model explanations or model-based explanations. But what are the precise conditions for ME? Are ME special explanations? In our paper, we first rebut two definitions of ME and specify a more promising one. Based on this analysis, we single out a related conception that is concerned with explanations that are induced from working with a model. We call them ‘model-induced explanations’. Second, we study three paradigmatic cases of alleged (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • How to make reflectance a surface property.Nicholas Danne - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 70:19-27.
    Reflectance physicalists define reflectance as the intrinsic disposition of a surface to reflect finite-duration light pulses at a given efficiency per wavelength. I criticize the received view of dispositional reflectance (David R. Hilbert’s) for failing to account for what I call “harmonic dispersion,” the inverse relationship of a light pulse's duration to its bandwidth. I argue that harmonic dispersion renders reflectance defined in terms of light pulses an extrinsic disposition. Reflectance defined as the per-wavelength efficiency to reflect the superimposed, infinite-duration, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An Extra-Mathematical Program Explanation of Color Experience.Nicholas Danne - 2020 - International Studies in the Philosophy of Science 33 (3):153-173.
    In the debate over whether mathematical facts, properties, or entities explain physical events (in what philosophers call “extra-mathematical” explanations), Aidan Lyon’s (2012) affirmative answer stands out for its employment of the program explanation (PE) methodology of Frank Jackson and Philip Pettit (1990). Juha Saatsi (2012; 2016) objects, however, that Lyon’s examples from the indispensabilist literature are (i) unsuitable for PE, (ii) nominalizable into non-mathematical terms, and (iii) mysterious about the explanatory relation alleged to obtain between the PE’s mathematical explanantia and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The inconsistency of Physics.Robert W. Batterman - 2014 - Synthese 191 (13):2973-2992.
    This paper discusses a conception of physics as a collection of theories that, from a logical point of view, is inconsistent. It is argued that this logical conception of the relations between physical theories is too crude. Mathematical subtleties allow for a much more nuanced and sophisticated understanding of the relations between different physical theories.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computing, Modelling, and Scientific Practice: Foundational Analyses and Limitations.Filippos A. Papagiannopoulos - 2018 - Dissertation, University of Western Ontario
    This dissertation examines aspects of the interplay between computing and scientific practice. The appropriate foundational framework for such an endeavour is rather real computability than the classical computability theory. This is so because physical sciences, engineering, and applied mathematics mostly employ functions defined in continuous domains. But, contrary to the case of computation over natural numbers, there is no universally accepted framework for real computation; rather, there are two incompatible approaches --computable analysis and BSS model--, both claiming to formalise algorithmic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Representation and Explanation: structuralism, the similarity account, and the hotchpotch picture.Ziren Yang - 2020 - Dissertation, University of Leeds
    This thesis starts with three challenges to the structuralist accounts of applied mathematics. Structuralism views applied mathematics as a matter of building mapping functions between mathematical and target-ended structures. The first challenge concerns how it is possible for a non-mathematical target to be represented mathematically when the mapping functions per se are mathematical objects. The second challenge arises out of inconsistent early calculus, which suggests that mathematical representation does not require rigorous mathematical structures. The third challenge comes from renormalisation group (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Computing, Modelling, and Scientific Practice: Foundational Analyses and Limitations.Philippos Papayannopoulos - 2018 - Dissertation,
    This dissertation examines aspects of the interplay between computing and scientific practice. The appropriate foundational framework for such an endeavour is rather real computability than the classical computability theory. This is so because physical sciences, engineering, and applied mathematics mostly employ functions defined in continuous domains. But, contrary to the case of computation over natural numbers, there is no universally accepted framework for real computation; rather, there are two incompatible approaches --computable analysis and BSS model--, both claiming to formalise algorithmic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation