Switch to: References

Add citations

You must login to add citations.
  1. On Two Slights to Noether's First Theorem: Mental Causation and General Relativity.J. Brian Pitts - unknown
    It is widely held among philosophers that the conservation of energy is true and important, and widely held among philosophers of science that conservation laws and symmetries are tied together by Noether's first theorem. However, beneath the surface of such consensus lie two slights to Noether's first theorem. First, there is a 325+-year controversy about mind-body interaction in relation to the conservation of energy and momentum, with occasional reversals of opinion. The currently popular Leibnizian view, dominant since the late 19th (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Can Quantum Thermodynamics Save Time?Noel Swanson - 2021 - Philosophy of Science 88 (2):281-302.
    The thermal time hypothesis is a proposed solution to the problem of time: a coarse-grained state determines a thermal dynamics according to which it is in equilibrium, and this defines the f...
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Peter Bergmann on observables in Hamiltonian General Relativity: A historical-critical investigation.J. Brian Pitts - 2022 - Studies in History and Philosophy of Science Part A 95 (C):1-27.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • GPS observables in Newtonian spacetime or why we do not need ‘physical’ coordinate systems.Álvaro Mozota Frauca - 2024 - European Journal for Philosophy of Science 14 (4):1-30.
    Some authors have defended the claim that one needs to be able to define ‘physical coordinate systems’ and ‘observables’ in order to make sense of general relativity. Moreover, in Rovelli (Physical Review D,65(4), 044017 2002), Rovelli proposes a way of implementing these ideas by making use of a system of satellites that allows defining a set of ‘physical coordinates’, the GPS coordinates. In this article I oppose these views in four ways. First, I defend an alternative way of understanding general (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What Are Observables in Hamiltonian Einstein–Maxwell Theory?James Pitts - 2019 - Foundations of Physics 49 (8):786-796.
    Is change missing in Hamiltonian Einstein–Maxwell theory? Given the most common definition of observables, observables are constants of the motion and nonlocal. Unfortunately this definition also implies that the observables for massive electromagnetism with gauge freedom are inequivalent to those of massive electromagnetism without gauge freedom. The alternative Pons–Salisbury–Sundermeyer definition of observables, aiming for Hamiltonian–Lagrangian equivalence, uses the gauge generator G, a tuned sum of first-class constraints, rather than each first-class constraint separately, and implies equivalent observables for equivalent massive electromagnetisms. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Change in Hamiltonian General Relativity with Spinors.J. Brian Pitts - 2021 - Foundations of Physics 51 (6):1-30.
    In General Relativity in Hamiltonian form, change has seemed to be missing, defined only asymptotically, or otherwise obscured at best, because the Hamiltonian is a sum of first-class constraints and a boundary term and thus supposedly generates gauge transformations. By construing change as essential time dependence, one can find change locally in vacuum GR in the Hamiltonian formulation just where it should be. But what if spinors are present? This paper is motivated by the tendency in space-time philosophy tends to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation