Switch to: References

Add citations

You must login to add citations.
  1. The concepts and origins of cell mortality.Pierre M. Durand & Grant Ramsey - 2023 - History and Philosophy of the Life Sciences 45 (23):1-23.
    Organismal death is foundational to the evolution of life, and many biological concepts such as natural selection and life history strategy are so fashioned only because individuals are mortal. Organisms, irrespective of their organization, are composed of basic functional units—cells—and it is our understanding of cell death that lies at the heart of most general explanatory frameworks for organismal mortality. Cell death can be exogenous, arising from transmissible diseases, predation, or other misfortunes, but there are also endogenous forms of death (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Birth of the eukaryotes by a set of reactive innovations: New insights force us to relinquish gradual models.Dave Speijer - 2015 - Bioessays 37 (12):1268-1276.
    Of two contending models for eukaryotic evolution the “archezoan“ has an amitochondriate eukaryote take up an endosymbiont, while “symbiogenesis“ states that an Archaeon became a eukaryote as the result of this uptake. If so, organelle formation resulting from new engulfments is simplified by the primordial symbiogenesis, and less informative regarding the bacterium‐to‐mitochondrion conversion. Gradualist archezoan visions still permeate evolutionary thinking, but are much less likely than symbiogenesis. Genuine amitochondriate eukaryotes have never been found and rapid, explosive adaptive periods characteristic of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • How the mitochondrion was shaped by radical differences in substrates.Dave Speijer - 2014 - Bioessays 36 (7):634-643.
    As free‐living organisms, alpha‐proteobacteria produce reactive oxygen species (ROS) that diffuse into the surroundings; once constrained inside the archaeal ancestor of eukaryotes, however, ROS production presented evolutionary pressures – especially because the alpha‐proteobacterial symbiont made more ROS, from a variety of substrates. I previously proposed that ratios of electrons coming from FADH2 and NADH (F/N ratios) correlate with ROS production levels during respiration, glucose breakdown having a much lower F/N ratio than longer fatty acid (FA) breakdown. Evidently, higher endogenous ROS (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Mitonuclear match: Optimizing fitness and fertility over generations drives ageing within generations.Nick Lane - 2011 - Bioessays 33 (11):860-869.
    Many conserved eukaryotic traits, including apoptosis, two sexes, speciation and ageing, can be causally linked to a bioenergetic requirement for mitochondrial genes. Mitochondrial genes encode proteins involved in cell respiration, which interact closely with proteins encoded by nuclear genes. Functional respiration requires the coadaptation of mitochondrial and nuclear genes, despite divergent tempi and modes of evolution. Free‐radical signals emerge directly from the biophysics of mosaic respiratory chains encoded by two genomes prone to mismatch, with apoptosis being the default penalty for (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Redox control and the evolution of multicellularity.Neil W. Blackstone - 2000 - Bioessays 22 (10):947-953.
    Download  
     
    Export citation  
     
    Bookmark   2 citations