Switch to: References

Add citations

You must login to add citations.
  1. Are quantum particles objects?Simon Saunders - 2006 - Analysis 66 (1):52-63.
    Particle indistinguishability has always been considered a purely quantum mechanical concept. In parallel, indistinguishable particles have been thought to be entities that are not properly speaking objects at all. I argue, to the contrary, that the concept can equally be applied to classical particles, and that in either case particles may (with certain exceptions) be counted as objects even though they are indistinguishable. The exceptions are elementary bosons (for example photons).
    Download  
     
    Export citation  
     
    Bookmark   159 citations  
  • Indistinguishability.Simon Saunders - unknown
    This is a systematic review of the concept of indistinguishability, in both classical and quantum mechanics, with particular attention to Gibbs paradox. Section 1 is on the Gibbs paradox; section 2 is a defense of classical indistinguishability, notwithstanding the widely-held view, that classical particles can always be distinguished by their trajectories. The last section is about the notion of object more generally, and on whether indistinguishables should be thought of as objects at all.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • On the explanation for quantum statistics.Simon Saunders - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (1):192-211.
    The concept of classical indistinguishability is analyzed and defended against a number of well-known criticisms, with particular attention to the Gibbs’paradox. Granted that it is as much at home in classical as in quantum statistical mechanics, the question arises as to why indistinguishability, in quantum mechanics but not in classical mechanics, forces a change in statistics. The answer, illustrated with simple examples, is that the equilibrium measure on classical phase space is continuous, whilst on Hilbert space it is discrete. The (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations