Switch to: References

Add citations

You must login to add citations.
  1. Presburger sets and p-minimal fields.Raf Cluckers - 2003 - Journal of Symbolic Logic 68 (1):153-162.
    We prove a cell decomposition theorem for Presburger sets and introduce a dimension theory for Z-groups with the Presburger structure. Using the cell decomposition theorem we obtain a full classification of Presburger sets up to definable bijection. We also exhibit a tight connection between the definable sets in an arbitrary p-minimal field and Presburger sets in its value group. We give a negative result about expansions of Presburger structures and prove uniform elimination of imaginaries for Presburger structures within the Presburger (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Coset-minimal groups.Oleg Belegradek, Viktor Verbovskiy & Frank O. Wagner - 2003 - Annals of Pure and Applied Logic 121 (2-3):113-143.
    A totally ordered group G is called coset-minimal if every definable subset of G is a finite union of cosets of definable subgroups intersected with intervals with endpoints in G{±∞}. Continuing work in Belegradek et al. 1115) and Point and Wagner 261), we study coset-minimality, as well as two weak versions of the notion: eventual and ultimate coset-minimality. These groups are abelian; an eventually coset-minimal group, as a pure ordered group, is an ordered abelian group of finite regular rank. Any (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Expansions of Presburger arithmetic with the exchange property.Nathanaël Mariaule - 2021 - Mathematical Logic Quarterly 67 (4):409-419.
    Let G be a model of Presburger arithmetic. Let be an expansion of the language of Presburger. In this paper, we prove that the ‐theory of G is ‐minimal iff it has the exchange property and is definably complete (i.e., any bounded definable set has a maximum). If the ‐theory of G has the exchange property but is not definably complete, there is a proper definable convex subgroup H. Assuming that the induced theories on H and are definable complete and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ordered abelian groups that do not have elimination of imaginaries.Martina Liccardo - forthcoming - Archive for Mathematical Logic:1-17.
    We investigate the property of elimination of imaginaries for some special cases of ordered abelian groups. We show that certain Hahn products of ordered abelian groups do not eliminate imaginaries in the pure language of ordered groups. Moreover, we prove that, adding finitely many constants to the language of ordered abelian groups, the theories of the finite lexicographic products $$\mathbb {Z}^n$$ and $$\mathbb {Z}^n \times \mathbb {Q}$$ have definable Skolem functions.
    Download  
     
    Export citation  
     
    Bookmark  
  • Integration and cell decomposition in p-minimal structures.Pablo Cubides Kovacsics & Eva Leenknegt - 2016 - Journal of Symbolic Logic 81 (3):1124-1141.
    Download  
     
    Export citation  
     
    Bookmark   4 citations