Switch to: References

Add citations

You must login to add citations.
  1. Complex Vector Formalism of Harmonic Oscillator in Geometric Algebra: Particle Mass, Spin and Dynamics in Complex Vector Space.K. Muralidhar - 2014 - Foundations of Physics 44 (3):266-295.
    Elementary particles are considered as local oscillators under the influence of zeropoint fields. Such oscillatory behavior of the particles leads to the deviations in their path of motion. The oscillations of the particle in general may be considered as complex rotations in complex vector space. The local particle harmonic oscillator is analyzed in the complex vector formalism considering the algebra of complex vectors. The particle spin is viewed as zeropoint angular momentum represented by a bivector. It has been shown that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Gravitational Effects in the Schrödinger Equation.M. D. Pollock - 2014 - Foundations of Physics 44 (4):368-388.
    The Schrödinger equation for a particle of rest mass $m$ and electrical charge $ne$ interacting with a four-vector potential $A_i$ can be derived as the non-relativistic limit of the Klein–Gordon equation $\left( \Box '+m^2\right) \varPsi =0$ for the wave function $\varPsi $ , where $\Box '=\eta ^{jk}\partial '_j\partial '_k$ and $\partial '_j=\partial _j -\mathrm {i}n e A_j$ , or equivalently from the one-dimensional action $S_1=-\int m ds +\int neA_i dx^i$ for the corresponding point particle in the semi-classical approximation $\varPsi \sim (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation