Switch to: References

Add citations

You must login to add citations.
  1. Extension of trigonometric and hyperbolic functions to vectorial arguments and its application to the representation of rotations and Lorentz transformations.H. Yamasaki - 1983 - Foundations of Physics 13 (11):1139-1154.
    The use of the axial vector representing a three-dimensional rotation makes the rotation representation much more compact by extending the trigonometric functions to vectorial arguments. Similarly, the pure Lorentz transformations are compactly treated by generalizing a scalar rapidity to a vector quantity in spatial three-dimensional cases and extending hyperbolic functions to vectorial arguments. A calculation of the Wigner rotation simplified by using the extended functions illustrates the fact that the rapidity vector space obeys hyperbolic geometry. New representations bring a Lorentz-invariant (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The introduction of Superluminal Lorentz transformations: A revisitation. [REVIEW]G. D. Maccarrone & Erasmo Recami - 1984 - Foundations of Physics 14 (5):367-407.
    We revisit the introduction of the Superluminal Lorentz transformations which carry from “bradyonic” inertial frames to “tachyonic” inertial frames, i.e., which transform time-like objects into space-like objects, andvice versa. It has long been known that special relativity can be extended to Superluminal observers only by increasing the number of dimensions of the space-time or—which is in a sense equivalent—by releasing the reality condition (i.e., introducing also imaginary quantities). In the past we always adopted the latter procedure. Here we show the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Algebraic field descriptions in three-dimensional Euclidean space.Nikos Salingaros & Yehiel Ilamed - 1984 - Foundations of Physics 14 (8):777-797.
    In this paper, we use the differential forms of three-dimensional Euclidean space to realize a Clifford algebra which is isomorphic to the algebra of the Pauli matrices or the complex quaternions. This is an associative vector-antisymmetric tensor algebra with division: We provide the algebraic inverse of an eight-component spinor field which is the sum of a scalar + vector + pseudovector + pseudoscalar. A surface of singularities is defined naturally by the inverse of an eight-component spinor and corresponds to a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation